Trade-offs in Fine-tuned Diffusion Models Between Accuracy and
Interpretability
- URL: http://arxiv.org/abs/2303.17908v2
- Date: Tue, 19 Dec 2023 19:12:39 GMT
- Title: Trade-offs in Fine-tuned Diffusion Models Between Accuracy and
Interpretability
- Authors: Mischa Dombrowski, Hadrien Reynaud, Johanna P. M\"uller, Matthew
Baugh, Bernhard Kainz
- Abstract summary: We unravel a consequential trade-off between image fidelity as gauged by conventional metrics and model interpretability in generative diffusion models.
We present a set of design principles for the development of truly interpretable generative models.
- Score: 5.865936619867771
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in diffusion models have significantly impacted the
trajectory of generative machine learning research, with many adopting the
strategy of fine-tuning pre-trained models using domain-specific text-to-image
datasets. Notably, this method has been readily employed for medical
applications, such as X-ray image synthesis, leveraging the plethora of
associated radiology reports. Yet, a prevailing concern is the lack of
assurance on whether these models genuinely comprehend their generated content.
With the evolution of text-conditional image generation, these models have
grown potent enough to facilitate object localization scrutiny. Our research
underscores this advancement in the critical realm of medical imaging,
emphasizing the crucial role of interpretability. We further unravel a
consequential trade-off between image fidelity as gauged by conventional
metrics and model interpretability in generative diffusion models.
Specifically, the adoption of learnable text encoders when fine-tuning results
in diminished interpretability. Our in-depth exploration uncovers the
underlying factors responsible for this divergence. Consequently, we present a
set of design principles for the development of truly interpretable generative
models. Code is available at https://github.com/MischaD/chest-distillation.
Related papers
- HistoSPACE: Histology-Inspired Spatial Transcriptome Prediction And Characterization Engine [0.0]
HistoSPACE model explore the diversity of histological images available with ST data to extract molecular insights from tissue image.
Model demonstrates significant efficiency compared to contemporary algorithms, revealing a correlation of 0.56 in leave-one-out cross-validation.
arXiv Detail & Related papers (2024-08-07T07:12:52Z) - Diffusion Model with Cross Attention as an Inductive Bias for Disentanglement [58.9768112704998]
Disentangled representation learning strives to extract the intrinsic factors within observed data.
We introduce a new perspective and framework, demonstrating that diffusion models with cross-attention can serve as a powerful inductive bias.
This is the first work to reveal the potent disentanglement capability of diffusion models with cross-attention, requiring no complex designs.
arXiv Detail & Related papers (2024-02-15T05:07:54Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
We introduce a novel approach that trains diffusion models conditioned on embeddings from self-supervised learning (SSL)
Our diffusion models successfully project these features back to high-quality histopathology and remote sensing images.
Augmenting real data by generating variations of real images improves downstream accuracy for patch-level and larger, image-scale classification tasks.
arXiv Detail & Related papers (2023-12-12T14:45:45Z) - On the Out of Distribution Robustness of Foundation Models in Medical
Image Segmentation [47.95611203419802]
Foundations for vision and language, pre-trained on extensive sets of natural image and text data, have emerged as a promising approach.
We compare the generalization performance to unseen domains of various pre-trained models after being fine-tuned on the same in-distribution dataset.
We further developed a new Bayesian uncertainty estimation for frozen models and used them as an indicator to characterize the model's performance on out-of-distribution data.
arXiv Detail & Related papers (2023-11-18T14:52:10Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusion is a framework for zero-shot conditional image generation using a diffusion model trained for unconditional generation.
We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution.
arXiv Detail & Related papers (2023-09-30T02:03:22Z) - RoentGen: Vision-Language Foundation Model for Chest X-ray Generation [7.618389245539657]
We develop a strategy to overcome the large natural-medical distributional shift by adapting a pre-trained latent diffusion model on a corpus of publicly available chest x-rays.
We investigate the model's ability to generate high-fidelity, diverse synthetic CXR conditioned on text prompts.
We present evidence that the resulting model (RoentGen) is able to create visually convincing, diverse synthetic CXR images.
arXiv Detail & Related papers (2022-11-23T06:58:09Z) - Adapting Pretrained Vision-Language Foundational Models to Medical
Imaging Domains [3.8137985834223502]
Building generative models for medical images that faithfully depict clinical context may help alleviate the paucity of healthcare datasets.
We explore the sub-components of the Stable Diffusion pipeline to fine-tune the model to generate medical images.
Our best-performing model improves upon the stable diffusion baseline and can be conditioned to insert a realistic-looking abnormality on a synthetic radiology image.
arXiv Detail & Related papers (2022-10-09T01:43:08Z) - Fast Unsupervised Brain Anomaly Detection and Segmentation with
Diffusion Models [1.6352599467675781]
We propose a method based on diffusion models to detect and segment anomalies in brain imaging.
Our diffusion models achieve competitive performance compared with autoregressive approaches across a series of experiments with 2D CT and MRI data.
arXiv Detail & Related papers (2022-06-07T17:30:43Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
We present a novel contrastive learning strategy called it Proactive Pseudo-Intervention (PPI)
PPI leverages proactive interventions to guard against image features with no causal relevance.
We also devise a novel causally informed salience mapping module to identify key image pixels to intervene, and show it greatly facilitates model interpretability.
arXiv Detail & Related papers (2020-12-06T20:30:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.