論文の概要: Language Models: A Guide for the Perplexed
- arxiv url: http://arxiv.org/abs/2311.17301v1
- Date: Wed, 29 Nov 2023 01:19:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-30 23:06:07.549258
- Title: Language Models: A Guide for the Perplexed
- Title(参考訳): 言語モデル: 複雑化のためのガイド
- Authors: Sofia Serrano, Zander Brumbaugh, Noah A. Smith
- Abstract要約: このチュートリアルは、言語モデルを学ぶ人と、興味を持ち、もっと学びたいと思う人とのギャップを狭めることを目的としています。
実験を通して学ぶことができる質問に焦点を当てた科学的視点を提供する。
言語モデルは、現在、その開発に繋がる研究の文脈に置かれています。
- 参考スコア(独自算出の注目度): 51.88841610098437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given the growing importance of AI literacy, we decided to write this
tutorial to help narrow the gap between the discourse among those who study
language models -- the core technology underlying ChatGPT and similar products
-- and those who are intrigued and want to learn more about them. In short, we
believe the perspective of researchers and educators can add some clarity to
the public's understanding of the technologies beyond what's currently
available, which tends to be either extremely technical or promotional material
generated about products by their purveyors.
Our approach teases apart the concept of a language model from products built
on them, from the behaviors attributed to or desired from those products, and
from claims about similarity to human cognition. As a starting point, we (1)
offer a scientific viewpoint that focuses on questions amenable to study
through experimentation; (2) situate language models as they are today in the
context of the research that led to their development; and (3) describe the
boundaries of what is known about the models at this writing.
- Abstract(参考訳): aiリテラシーの重要性が増していることを踏まえて、私たちはこのチュートリアルを書くことにしました。言語モデル(chatgptと類似製品の中核技術)を研究する人たちと、興味を持ち、それらについてもっと学びたがっている人たちとのギャップを狭めるためにです。
要するに、研究者や教育者の視点は、現在利用可能なもの以上の技術に対する一般大衆の理解に、ある程度の明確さを与えることができる、と私たちは信じている。
我々のアプローチは、言語モデルの概念を、それらの製品上に構築された製品から、それらの製品から引き起こされた行動、そして人間の認知と類似性に関する主張から切り離している。
出発点として,(1)実験を通して学ぶことができる質問に焦点をあてる科学的視点,(2)その発展に繋がる研究の文脈で現在ある言語モデルを定式化すること,(3)本論文におけるモデルについて知られていることの境界を記述する。
関連論文リスト
- Generative Artificial Intelligence: A Systematic Review and Applications [7.729155237285151]
本稿では、ジェネレーティブAIにおける最近の進歩と技術に関する体系的なレビューと分析について述べる。
生成AIがこれまで行った大きな影響は、大きな言語モデルの開発による言語生成である。
論文は、責任あるAIの原則と、これらの生成モデルの持続可能性と成長に必要な倫理的考察から締めくくられる。
論文 参考訳(メタデータ) (2024-05-17T18:03:59Z) - Learning Interpretable Concepts: Unifying Causal Representation Learning
and Foundation Models [51.43538150982291]
人間の解釈可能な概念をデータから学習する方法を研究する。
両分野からアイデアをまとめ、多様なデータから概念を確実に回収できることを示す。
論文 参考訳(メタデータ) (2024-02-14T15:23:59Z) - Construction Grammar and Language Models [4.171555557592296]
近年のディープラーニングの進歩は、主にクローゼのようなタスクで訓練された強力なモデルを生み出している。
この章は、自然言語処理と構築文法の分野における研究者間のコラボレーションを促進することを目的としている。
論文 参考訳(メタデータ) (2023-08-25T11:37:56Z) - Towards More Human-like AI Communication: A Review of Emergent
Communication Research [0.0]
創発的コミュニケーション(英: Emergent Communication, Emecom)は、自然言語を利用できる人工エージェントの開発を目的とした研究分野である。
本稿では,文献の共通点と,それらが人間同士の相互作用にどのように関係しているかを概説する。
2つのサブカテゴリを特定し、その特性とオープンな課題を強調します。
論文 参考訳(メタデータ) (2023-08-01T14:43:10Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
視覚シーンの構成的性質を観察し、推論する視覚システムは、我々の世界を理解するのに不可欠である。
モデルは、このようなモダリティと大規模なトレーニングデータとのギャップを埋めることを学び、コンテキスト推論、一般化、テスト時の迅速な機能を容易にした。
このようなモデルの出力は、例えば、バウンディングボックスを設けて特定のオブジェクトをセグメント化したり、画像や映像シーンについて質問したり、言語命令でロボットの動作を操作することで対話的な対話を行うなど、リトレーニングすることなく、人為的なプロンプトによって変更することができる。
論文 参考訳(メタデータ) (2023-07-25T17:59:18Z) - BabySLM: language-acquisition-friendly benchmark of self-supervised
spoken language models [56.93604813379634]
音声表現を学習するための自己指導技術は、人間のラベルを必要とせずに、音声への露出から言語能力を高めることが示されている。
語彙および構文レベルで音声言語モデルを探索するために,言語習得に親しみやすいベンチマークを提案する。
テキストと音声のギャップを埋めることと、クリーンな音声とその内話のギャップを埋めることである。
論文 参考訳(メタデータ) (2023-06-02T12:54:38Z) - How to Do Things with Deep Learning Code [0.0]
我々は,一般ユーザーが深層学習システムの行動と対話し,直接的に対話する手段に注意を向ける。
問題となっているのは、大規模言語モデルの責任ある応用について、社会技術的に理解されたコンセンサスを達成する可能性である。
論文 参考訳(メタデータ) (2023-04-19T03:46:12Z) - Rethinking Explainability as a Dialogue: A Practitioner's Perspective [57.87089539718344]
医師、医療専門家、政策立案者に対して、説明を求めるニーズと欲求について尋ねる。
本研究は, 自然言語対話の形での対話的説明を, 意思決定者が強く好むことを示唆する。
これらのニーズを考慮して、インタラクティブな説明を設計する際に、研究者が従うべき5つの原則を概説する。
論文 参考訳(メタデータ) (2022-02-03T22:17:21Z) - Visually grounded models of spoken language: A survey of datasets,
architectures and evaluation techniques [15.906959137350247]
この調査は、過去20年間の音声言語の視覚的接地モデルの進化の概要を提供する。
我々は、この研究の多くを可能にした中心的な研究課題、開発スケジュール、データセットについて論じる。
論文 参考訳(メタデータ) (2021-04-27T14:32:22Z) - Positioning yourself in the maze of Neural Text Generation: A
Task-Agnostic Survey [54.34370423151014]
本稿では, ストーリーテリング, 要約, 翻訳など, 世代ごとのタスクインパクトをリレーする手法の構成要素について検討する。
本稿では,学習パラダイム,事前学習,モデリングアプローチ,復号化,各分野における重要な課題について,命令的手法の抽象化を提案する。
論文 参考訳(メタデータ) (2020-10-14T17:54:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。