論文の概要: Towards Top-Down Reasoning: An Explainable Multi-Agent Approach for Visual Question Answering
- arxiv url: http://arxiv.org/abs/2311.17331v3
- Date: Thu, 31 Oct 2024 03:08:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 16:57:45.032305
- Title: Towards Top-Down Reasoning: An Explainable Multi-Agent Approach for Visual Question Answering
- Title(参考訳): トップダウン推論に向けて:視覚的質問応答に対する説明可能なマルチエージェントアプローチ
- Authors: Zeqing Wang, Wentao Wan, Qiqing Lao, Runmeng Chen, Minjie Lang, Keze Wang, Liang Lin,
- Abstract要約: 本稿では,視覚言語モデル(VLM)の能力を高めるために,LLM(Large Language Models)の拡張的知識を活用することで,新しいマルチエージェントコラボレーションフレームワークを導入する。
- 参考スコア(独自算出の注目度): 45.88079503965459
- License:
- Abstract: Recently, to comprehensively improve Vision Language Models (VLMs) for Visual Question Answering (VQA), several methods have been proposed to further reinforce the inference capabilities of VLMs to independently tackle VQA tasks rather than some methods that only utilize VLMs as aids to Large Language Models (LLMs). However, these methods ignore the rich common-sense knowledge inside the given VQA image sampled from the real world. Thus, they cannot fully use the powerful VLM for the given VQA question to achieve optimal performance. Attempt to overcome this limitation and inspired by the human top-down reasoning process, i.e., systematically exploring relevant issues to derive a comprehensive answer, this work introduces a novel, explainable multi-agent collaboration framework by leveraging the expansive knowledge of Large Language Models (LLMs) to enhance the capabilities of VLMs themselves. Specifically, our framework comprises three agents, i.e., Responder, Seeker, and Integrator, to collaboratively answer the given VQA question by seeking its relevant issues and generating the final answer in such a top-down reasoning process. The VLM-based Responder agent generates the answer candidates for the question and responds to other relevant issues. The Seeker agent, primarily based on LLM, identifies relevant issues related to the question to inform the Responder agent and constructs a Multi-View Knowledge Base (MVKB) for the given visual scene by leveraging the build-in world knowledge of LLM. The Integrator agent combines knowledge from the Seeker agent and the Responder agent to produce the final VQA answer. Extensive and comprehensive evaluations on diverse VQA datasets with a variety of VLMs demonstrate the superior performance and interpretability of our framework over the baseline method in the zero-shot setting without extra training cost.
- Abstract(参考訳): 近年,視覚質問応答のための視覚言語モデル (VLM) を包括的に改善する手法が提案されている。
しかし、これらの手法は現実世界からサンプリングされた与えられたVQA画像内の豊富な常識知識を無視する。
したがって、与えられたVQA問題に対して強力なVLMを完全に使用して最適な性能を達成することはできない。
この制限を克服し、人間のトップダウン推論プロセス、すなわち包括的回答を導き出すために体系的に関連する問題を探求する試みにおいて、この研究は、大規模言語モデル(LLM)の拡張的な知識を活用して、VLM自体の能力を高めることによって、斬新で説明可能な多エージェント協調フレームワークを導入する。
具体的には、このフレームワークはResponder、Seeker、Integratorの3つのエージェントから構成され、与えられたVQA質問に対して、関連する問題を探し出し、そのようなトップダウン推論プロセスで最終回答を生成する。
VLMベースのResponderエージェントは、質問に対する回答候補を生成し、他の関連する問題に応答する。
主にLLMをベースとしたSeekerエージェントは、Responderエージェントに通知する質問に関連する問題を特定し、LLMのビルトインワールド知識を活用することで、与えられた視覚シーンに対してMVKB(Multi-View Knowledge Base)を構築する。
インテグレータエージェントは、SeekerエージェントとResponderエージェントからの知識を組み合わせて、最終的なVQA応答を生成する。
各種VLMを用いた多種多様なVQAデータセットの包括的・包括的評価は、余分な訓練コストを伴わないゼロショット設定において、ベースライン法よりも優れた性能と解釈性を示す。
関連論文リスト
- AGENT-CQ: Automatic Generation and Evaluation of Clarifying Questions for Conversational Search with LLMs [53.6200736559742]
エージェント-CQは、世代ステージと評価ステージの2つのステージから構成される。
CrowdLLMは、人間のクラウドソーシング判断をシミュレートして、生成された質問や回答を評価する。
ClariQデータセットの実験では、質問と回答の品質を評価するCrowdLLMの有効性が示されている。
論文 参考訳(メタデータ) (2024-10-25T17:06:27Z) - Declarative Knowledge Distillation from Large Language Models for Visual Question Answering Datasets [9.67464173044675]
VQA(Visual Question Answering)は、画像に関する質問に答えるタスクである。
本稿では,Large Language Models (LLMs) からの宣言的知識蒸留手法を提案する。
以上の結果から,LSMから知識を抽出することは,データ駆動型ルール学習のアプローチ以外には有望な方向であることが確認された。
論文 参考訳(メタデータ) (2024-10-12T08:17:03Z) - AQA: Adaptive Question Answering in a Society of LLMs via Contextual Multi-Armed Bandit [59.10281630985958]
質問応答(QA)では、異なる質問を異なる回答戦略で効果的に扱うことができる。
本稿では,各質問に対して最適なQA戦略を適応的に選択する動的手法を提案する。
提案手法は,複数のモジュールを持つQAシステムの適応的オーケストレーションに有効であることを示す。
論文 参考訳(メタデータ) (2024-09-20T12:28:18Z) - Multi-LLM QA with Embodied Exploration [55.581423861790945]
未知環境における質問応答におけるマルチエンボディードLEMエクスプローラ(MELE)の利用について検討する。
複数のLSMベースのエージェントが独立して家庭用環境に関する質問を探索し、回答する。
各問合せに対して1つの最終回答を生成するために,異なるアグリゲーション手法を解析する。
論文 参考訳(メタデータ) (2024-06-16T12:46:40Z) - LOVA3: Learning to Visual Question Answering, Asking and Assessment [61.51687164769517]
質問への回答、質問、評価は、世界を理解し、知識を得るのに不可欠な3つの人間の特性である。
現在のMLLM(Multimodal Large Language Models)は主に質問応答に焦点を当てており、質問や評価スキルの可能性を無視することが多い。
LOVA3は、"Learning tO Visual Question Answering, Asking and Assessment"と名付けられた革新的なフレームワークである。
論文 参考訳(メタデータ) (2024-05-23T18:21:59Z) - Advancing Large Multi-modal Models with Explicit Chain-of-Reasoning and Visual Question Generation [34.45251681923171]
本稿では,大規模視覚・言語モデル(VLM)の開発に向けた新しいアプローチを提案する。
本稿では,質問に対して必要な知識を習得し,推論プロセスの堅牢性と説明可能性を高めるシステムを提案する。
データセットは、キャプション生成のような一般的なタスクから、専門家の知識を必要とする専門的なVQAタスクまで、さまざまなタスクをカバーする。
論文 参考訳(メタデータ) (2024-01-18T14:21:56Z) - Filling the Image Information Gap for VQA: Prompting Large Language
Models to Proactively Ask Questions [15.262736501208467]
大規模言語モデル(LLM)は、驚くべき推論能力と世界知識の維持を実証する。
画像がLLMに見えないため、研究者は画像からテキストに変換してLLMを視覚的疑問推論の手順に変換する。
我々は、LLMが積極的に関連する質問をし、画像のより詳細な情報を公開できるフレームワークを設計する。
論文 参考訳(メタデータ) (2023-11-20T08:23:39Z) - Improving Zero-shot Visual Question Answering via Large Language Models
with Reasoning Question Prompts [22.669502403623166]
本稿では,VQAタスクに対する推論質問プロンプトを提案する。
自己完結した質問は、教師なし質問セットモジュールを介して推論された質問プロンプトとして生成する。
各推論質問は、元の質問の意図を明確に示す。
そして、回答整合性として働く信頼度スコアに関連する候補回答をLSMに入力する。
論文 参考訳(メタデータ) (2023-11-15T15:40:46Z) - From Images to Textual Prompts: Zero-shot VQA with Frozen Large Language
Models [111.42052290293965]
大規模言語モデル(LLM)は、新しい言語タスクに対して優れたゼロショット一般化を証明している。
視覚と言語データに対するエンドツーエンドのトレーニングは、切断を橋渡しするかもしれないが、柔軟性がなく、計算コストがかかる。
上述したモダリティとタスクの切断をブリッジできるプロンプトを提供するプラグイン・アンド・プレイモジュールであるemphImg2Promptを提案する。
論文 参考訳(メタデータ) (2022-12-21T08:39:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。