論文の概要: MagDiff: Multi-Alignment Diffusion for High-Fidelity Video Generation and Editing
- arxiv url: http://arxiv.org/abs/2311.17338v3
- Date: Mon, 15 Jul 2024 08:51:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 02:44:20.726853
- Title: MagDiff: Multi-Alignment Diffusion for High-Fidelity Video Generation and Editing
- Title(参考訳): MagDiff:高忠実度ビデオ生成と編集のためのマルチアライメント拡散
- Authors: Haoyu Zhao, Tianyi Lu, Jiaxi Gu, Xing Zhang, Qingping Zheng, Zuxuan Wu, Hang Xu, Yu-Gang Jiang,
- Abstract要約: 我々は、高忠実度ビデオ生成と編集の両方のタスクに対して、MagDiffと呼ばれる統合多重配位拡散を提案する。
提案したMagDiffは、主観駆動アライメント、適応プロンプトアライメント、高忠実アライメントを含む3種類のアライメントを導入している。
- 参考スコア(独自算出の注目度): 90.06041718086317
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The diffusion model is widely leveraged for either video generation or video editing. As each field has its task-specific problems, it is difficult to merely develop a single diffusion for completing both tasks simultaneously. Video diffusion sorely relying on the text prompt can be adapted to unify the two tasks. However, it lacks a high capability of aligning heterogeneous modalities between text and image, leading to various misalignment problems. In this work, we are the first to propose a unified Multi-alignment Diffusion, dubbed as MagDiff, for both tasks of high-fidelity video generation and editing. The proposed MagDiff introduces three types of alignments, including subject-driven alignment, adaptive prompts alignment, and high-fidelity alignment. Particularly, the subject-driven alignment is put forward to trade off the image and text prompts, serving as a unified foundation generative model for both tasks. The adaptive prompts alignment is introduced to emphasize different strengths of homogeneous and heterogeneous alignments by assigning different values of weights to the image and the text prompts. The high-fidelity alignment is developed to further enhance the fidelity of both video generation and editing by taking the subject image as an additional model input. Experimental results on four benchmarks suggest that our method outperforms the previous method on each task.
- Abstract(参考訳): 拡散モデルは、ビデオ生成またはビデオ編集に広く活用されている。
各フィールドにはタスク固有の問題があるため、両方のタスクを同時に完了するための単一の拡散を開発することは困難である。
テキストプロンプトに依存するビデオ拡散は、2つのタスクを統一するために適応することができる。
しかし、テキストと画像の間に不均一なモダリティを整列させる能力が欠如しており、様々なミスアライメント問題を引き起こしている。
本研究は,高忠実度ビデオ生成と編集の両方のタスクに対して,MagDiffと呼ばれる統合多面的拡散を提案する最初の試みである。
提案したMagDiffは、主観駆動アライメント、適応プロンプトアライメント、高忠実アライメントを含む3種類のアライメントを導入している。
特に、被写体駆動アライメントは、イメージとテキストプロンプトをトレードオフするために前進し、両方のタスクの統一された基礎生成モデルとして機能する。
アダプティブプロンプトアライメントは、画像とテキストプロンプトに重みの異なる値を割り当てることで、同質なアライメントと異質なアライメントの異なる強度を強調するために導入された。
高忠実度アライメントは、被写体画像を追加のモデル入力として取り込むことにより、映像生成と編集の両方の忠実度をさらに向上させる。
4つのベンチマークによる実験結果から,提案手法は各タスクにおける前の手法よりも優れていたことが示唆された。
関連論文リスト
- A Survey of Multimodal-Guided Image Editing with Text-to-Image Diffusion Models [117.77807994397784]
画像編集は、ユーザーが特定の要求を満たすために、与えられた合成画像または実際の画像を編集することを目的としている。
この分野での最近の顕著な進歩は、テキスト・ツー・イメージ(T2I)拡散モデルの開発に基づいている。
T2Iベースの画像編集手法は、編集性能を大幅に向上させ、マルチモーダル入力でガイドされたコンテンツを修正するためのユーザフレンドリーなインタフェースを提供する。
論文 参考訳(メタデータ) (2024-06-20T17:58:52Z) - MS-Diffusion: Multi-subject Zero-shot Image Personalization with Layout Guidance [6.4680449907623006]
本研究では,マルチオブジェクトを用いたレイアウト誘導ゼロショット画像パーソナライズのためのMS-Diffusionフレームワークを提案する。
提案した多目的クロスアテンションオーケストラは、テキストの制御を保ちながら、オブジェクト間コンポジションを編成する。
論文 参考訳(メタデータ) (2024-06-11T12:32:53Z) - Contextualized Diffusion Models for Text-Guided Image and Video Generation [67.69171154637172]
条件拡散モデルは高忠実度テキスト誘導視覚生成および編集において優れた性能を示した。
本研究では,テキスト条件と視覚的サンプル間の相互作用とアライメントを包含するクロスモーダルコンテキストを組み込むことにより,コンテキスト拡散モデル(ContextDiff)を提案する。
理論的導出を伴うDDPMとDDIMの両方にモデルを一般化し、テキスト・ツー・イメージ生成とテキスト・ツー・ビデオ編集という2つの課題を伴う評価において、モデルの有効性を実証する。
論文 参考訳(メタデータ) (2024-02-26T15:01:16Z) - Consolidating Attention Features for Multi-view Image Editing [126.19731971010475]
本研究では,空間制御に基づく幾何学的操作に着目し,様々な視点にまたがって編集プロセスを統合する手法を提案する。
編集画像の内部クエリ機能に基づいて訓練されたニューラルラジアンス場QNeRFを紹介する。
拡散時間の経過とともにクエリをよりよく統合する、プログレッシブで反復的な手法により、プロセスを洗練します。
論文 参考訳(メタデータ) (2024-02-22T18:50:18Z) - DiffEditor: Boosting Accuracy and Flexibility on Diffusion-based Image
Editing [66.43179841884098]
大規模テキスト・ツー・イメージ(T2I)拡散モデルは、ここ数年で画像生成に革命をもたらした。
既存の拡散型画像編集における2つの弱点を正すためにDiffEditorを提案する。
本手法は,様々な精細な画像編集タスクにおいて,最先端の性能を効率的に達成することができる。
論文 参考訳(メタデータ) (2024-02-04T18:50:29Z) - Unified Diffusion-Based Rigid and Non-Rigid Editing with Text and Image
Guidance [15.130419159003816]
本稿では,厳密な編集と非厳密な編集の両方を実行できる多用途画像編集フレームワークを提案する。
我々は、多種多様な編集シナリオを扱うために、デュアルパスインジェクション方式を利用する。
外観と構造情報の融合のための統合自己認識機構を導入する。
論文 参考訳(メタデータ) (2024-01-04T08:21:30Z) - InstructVid2Vid: Controllable Video Editing with Natural Language Instructions [97.17047888215284]
InstructVid2Vidは、人間の言語命令でガイドされたビデオ編集のためのエンドツーエンドの拡散ベースの方法論である。
我々のアプローチは、自然言語ディレクティブによって案内される映像操作を強化し、サンプルごとの微調整や逆変換の必要性を排除します。
論文 参考訳(メタデータ) (2023-05-21T03:28:13Z) - Pix2Video: Video Editing using Image Diffusion [43.07444438561277]
テキスト誘導映像編集における事前学習画像モデルの使用方法について検討する。
まず、事前訓練された構造誘導画像拡散モデルを用いて、アンカーフレーム上でテキスト誘導編集を行う。
我々は、計算集約的な事前処理やビデオ固有の微調整なしに、リアルなテキスト誘導ビデオ編集が可能であることを実証した。
論文 参考訳(メタデータ) (2023-03-22T16:36:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。