Interpreting Differentiable Latent States for Healthcare Time-series
Data
- URL: http://arxiv.org/abs/2311.17560v1
- Date: Wed, 29 Nov 2023 11:48:16 GMT
- Title: Interpreting Differentiable Latent States for Healthcare Time-series
Data
- Authors: Yu Chen, Nivedita Bijlani, Samaneh Kouchaki, Payam Barnaghi
- Abstract summary: We present a concise algorithm that allows for interpreting latent states using highly related input features.
We demonstrate this approach enables the identification of a daytime behavioral pattern for predicting nocturnal behavior in a real-world healthcare dataset.
- Score: 4.581930518669275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning enables extracting clinical insights from large temporal
datasets. The applications of such machine learning models include identifying
disease patterns and predicting patient outcomes. However, limited
interpretability poses challenges for deploying advanced machine learning in
digital healthcare. Understanding the meaning of latent states is crucial for
interpreting machine learning models, assuming they capture underlying
patterns. In this paper, we present a concise algorithm that allows for i)
interpreting latent states using highly related input features; ii)
interpreting predictions using subsets of input features via latent states; and
iii) interpreting changes in latent states over time. The proposed algorithm is
feasible for any model that is differentiable. We demonstrate that this
approach enables the identification of a daytime behavioral pattern for
predicting nocturnal behavior in a real-world healthcare dataset.
Related papers
- Selecting Interpretability Techniques for Healthcare Machine Learning models [69.65384453064829]
In healthcare there is a pursuit for employing interpretable algorithms to assist healthcare professionals in several decision scenarios.
We overview a selection of eight algorithms, both post-hoc and model-based, that can be used for such purposes.
arXiv Detail & Related papers (2024-06-14T17:49:04Z) - Sequential Inference of Hospitalization Electronic Health Records Using Probabilistic Models [3.2988476179015005]
In this work we design a probabilistic unsupervised model for multiple arbitrary-length sequences contained in hospitalization Electronic Health Record (EHR) data.
The model uses a latent variable structure and captures complex relationships between medications, diagnoses, laboratory tests, neurological assessments, and medications.
Inference algorithms are derived that use partial data to infer properties of the complete sequences, including their length and presence of specific values.
arXiv Detail & Related papers (2024-03-27T21:06:26Z) - Learning and DiSentangling Patient Static Information from Time-series
Electronic HEalth Record (STEER) [3.079694232219292]
Recent work in machine learning for healthcare has raised concerns about patient privacy and algorithmic fairness.
Here we systematically investigated the ability of time-series electronic health record data to predict patient static information.
We found that not only the raw time-series data, but also learned representations from machine learning models, can be trained to predict a variety of static information.
arXiv Detail & Related papers (2023-09-20T14:54:48Z) - Bayesian Networks for the robust and unbiased prediction of depression
and its symptoms utilizing speech and multimodal data [65.28160163774274]
We apply a Bayesian framework to capture the relationships between depression, depression symptoms, and features derived from speech, facial expression and cognitive game data collected at thymia.
arXiv Detail & Related papers (2022-11-09T14:48:13Z) - SurvSHAP(t): Time-dependent explanations of machine learning survival
models [6.950862982117125]
We introduce SurvSHAP(t), the first time-dependent explanation that allows for interpreting survival black-box models.
Experiments on synthetic and medical data confirm that SurvSHAP(t) can detect variables with a time-dependent effect.
We provide an accessible implementation of time-dependent explanations in Python.
arXiv Detail & Related papers (2022-08-23T17:01:14Z) - Time Series Prediction using Deep Learning Methods in Healthcare [0.0]
Traditional machine learning methods face two main challenges in dealing with healthcare predictive analytics tasks.
The high-dimensional nature of healthcare data needs labor-intensive processes to select an appropriate set of features for each new task.
Recent deep learning methods have shown promising performance for various healthcare prediction tasks.
arXiv Detail & Related papers (2021-08-30T18:14:27Z) - Self-Supervised Graph Learning with Hyperbolic Embedding for Temporal
Health Event Prediction [13.24834156675212]
We propose a hyperbolic embedding method with information flow to pre-train medical code representations in a hierarchical structure.
We incorporate these pre-trained representations into a graph neural network to detect disease complications.
We present a new hierarchy-enhanced historical prediction proxy task in our self-supervised learning framework to fully utilize EHR data.
arXiv Detail & Related papers (2021-06-09T00:42:44Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
In this article a new kind of interpretable machine learning method is presented.
It can help to understand the partitioning of the feature space into predicted classes in a classification model using quantile shifts.
Basically, real data points (or specific points of interest) are used and the changes of the prediction after slightly raising or decreasing specific features are observed.
arXiv Detail & Related papers (2020-09-11T16:35:53Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.