Self-Supervised Graph Learning with Hyperbolic Embedding for Temporal
Health Event Prediction
- URL: http://arxiv.org/abs/2106.04751v1
- Date: Wed, 9 Jun 2021 00:42:44 GMT
- Title: Self-Supervised Graph Learning with Hyperbolic Embedding for Temporal
Health Event Prediction
- Authors: Chang Lu, Chandan K. Reddy, Yue Ning
- Abstract summary: We propose a hyperbolic embedding method with information flow to pre-train medical code representations in a hierarchical structure.
We incorporate these pre-trained representations into a graph neural network to detect disease complications.
We present a new hierarchy-enhanced historical prediction proxy task in our self-supervised learning framework to fully utilize EHR data.
- Score: 13.24834156675212
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electronic Health Records (EHR) have been heavily used in modern healthcare
systems for recording patients' admission information to hospitals. Many
data-driven approaches employ temporal features in EHR for predicting specific
diseases, readmission times, or diagnoses of patients. However, most existing
predictive models cannot fully utilize EHR data, due to an inherent lack of
labels in supervised training for some temporal events. Moreover, it is hard
for existing works to simultaneously provide generic and personalized
interpretability. To address these challenges, we first propose a hyperbolic
embedding method with information flow to pre-train medical code
representations in a hierarchical structure. We incorporate these pre-trained
representations into a graph neural network to detect disease complications,
and design a multi-level attention method to compute the contributions of
particular diseases and admissions, thus enhancing personalized
interpretability. We present a new hierarchy-enhanced historical prediction
proxy task in our self-supervised learning framework to fully utilize EHR data
and exploit medical domain knowledge. We conduct a comprehensive set of
experiments and case studies on widely used publicly available EHR datasets to
verify the effectiveness of our model. The results demonstrate our model's
strengths in both predictive tasks and interpretable abilities.
Related papers
- Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Time-aware Heterogeneous Graph Transformer with Adaptive Attention Merging for Health Event Prediction [6.578298085691462]
We introduce a novel heterogeneous graph learning model designed to assimilate disease domain knowledge and elucidate the intricate relationships between drugs and diseases.
When evaluated on two healthcare datasets, our approach demonstrated notable enhancements in both prediction accuracy and interpretability.
arXiv Detail & Related papers (2024-04-23T08:01:30Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - An Interpretable Deep-Learning Framework for Predicting Hospital
Readmissions From Electronic Health Records [2.156208381257605]
We propose a novel, interpretable deep-learning framework for predicting unplanned hospital readmissions.
We validate our system on the two predictive tasks of hospital readmission within 30 and 180 days, using real-world data.
arXiv Detail & Related papers (2023-10-16T08:48:52Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Contrastive Learning-based Imputation-Prediction Networks for
In-hospital Mortality Risk Modeling using EHRs [9.578930989075035]
This paper presents a contrastive learning-based imputation-prediction network for predicting in-hospital mortality risks using EHR data.
Our approach introduces graph analysis-based patient stratification modeling in the imputation process to group similar patients.
Experiments on two real-world EHR datasets show that our approach outperforms the state-of-the-art approaches in both imputation and prediction tasks.
arXiv Detail & Related papers (2023-08-19T03:24:34Z) - Integrated Convolutional and Recurrent Neural Networks for Health Risk
Prediction using Patient Journey Data with Many Missing Values [9.418011774179794]
This paper proposes a novel end-to-end approach to modeling EHR patient journey data with Integrated Convolutional and Recurrent Neural Networks.
Our model can capture both long- and short-term temporal patterns within each patient journey and effectively handle the high degree of missingness in EHR data without any imputation data generation.
arXiv Detail & Related papers (2022-11-11T07:36:18Z) - Unsupervised Pre-Training on Patient Population Graphs for Patient-Level
Predictions [48.02011627390706]
Pre-training has shown success in different areas of machine learning, such as Computer Vision (CV), Natural Language Processing (NLP) and medical imaging.
In this paper, we apply unsupervised pre-training to heterogeneous, multi-modal EHR data for patient outcome prediction.
We find that our proposed graph based pre-training method helps in modeling the data at a population level.
arXiv Detail & Related papers (2022-03-23T17:59:45Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.