GaussianShader: 3D Gaussian Splatting with Shading Functions for
Reflective Surfaces
- URL: http://arxiv.org/abs/2311.17977v1
- Date: Wed, 29 Nov 2023 17:22:26 GMT
- Title: GaussianShader: 3D Gaussian Splatting with Shading Functions for
Reflective Surfaces
- Authors: Yingwenqi Jiang, Jiadong Tu, Yuan Liu, Xifeng Gao, Xiaoxiao Long,
Wenping Wang, Yuexin Ma
- Abstract summary: We present a novel method that applies a simplified shading function on 3D Gaussians to enhance the neural rendering in scenes with reflective surfaces.
Experiments show that GaussianShader strikes a commendable balance between efficiency and visual quality.
- Score: 45.15827491185572
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The advent of neural 3D Gaussians has recently brought about a revolution in
the field of neural rendering, facilitating the generation of high-quality
renderings at real-time speeds. However, the explicit and discrete
representation encounters challenges when applied to scenes featuring
reflective surfaces. In this paper, we present GaussianShader, a novel method
that applies a simplified shading function on 3D Gaussians to enhance the
neural rendering in scenes with reflective surfaces while preserving the
training and rendering efficiency. The main challenge in applying the shading
function lies in the accurate normal estimation on discrete 3D Gaussians.
Specifically, we proposed a novel normal estimation framework based on the
shortest axis directions of 3D Gaussians with a delicately designed loss to
make the consistency between the normals and the geometries of Gaussian
spheres. Experiments show that GaussianShader strikes a commendable balance
between efficiency and visual quality. Our method surpasses Gaussian Splatting
in PSNR on specular object datasets, exhibiting an improvement of 1.57dB. When
compared to prior works handling reflective surfaces, such as Ref-NeRF, our
optimization time is significantly accelerated (23h vs. 0.58h). Please click on
our project website to see more results.
Related papers
- GaussianRoom: Improving 3D Gaussian Splatting with SDF Guidance and Monocular Cues for Indoor Scene Reconstruction [3.043712258792239]
We present a unified framework integrating neural SDF with 3DGS.
This framework incorporates a learnable neural SDF field to guide the densification and pruning of Gaussians.
Our method achieves state-of-the-art performance in both surface reconstruction and novel view synthesis.
arXiv Detail & Related papers (2024-05-30T03:46:59Z) - RTG-SLAM: Real-time 3D Reconstruction at Scale using Gaussian Splatting [51.51310922527121]
We present a real-time 3D reconstruction system with an RGBD camera for large-scale environments using Gaussian splatting.
We force each Gaussian to be either opaque or nearly transparent, with the opaque ones fitting the surface and dominant colors, and transparent ones fitting residual colors.
We show real-time reconstructions of a variety of large scenes and show superior performance in the realism of novel view synthesis and camera tracking accuracy.
arXiv Detail & Related papers (2024-04-30T16:54:59Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF) is a novel approach for efficient, high-quality, and adaptive surface reconstruction in scenes.
GOF is derived from ray-tracing-based volume rendering of 3D Gaussians.
GOF surpasses existing 3DGS-based methods in surface reconstruction and novel view synthesis.
arXiv Detail & Related papers (2024-04-16T17:57:19Z) - BAD-Gaussians: Bundle Adjusted Deblur Gaussian Splatting [8.380954205255104]
BAD-Gaussians is a novel approach to handle severe motion-blurred images with inaccurate camera poses.
Our method achieves superior rendering quality compared to previous state-of-the-art deblur neural rendering methods.
arXiv Detail & Related papers (2024-03-18T14:43:04Z) - Recent Advances in 3D Gaussian Splatting [31.3820273122585]
3D Gaussian Splatting has greatly accelerated rendering speed of novel view synthesis.
The explicit representation of 3D Gaussian Splatting facilitates editing tasks like dynamic reconstruction, geometry editing, and physical simulation.
We present a literature review of recent 3D Gaussian Splatting methods, which can be roughly classified into 3D reconstruction, 3D editing, and other downstream applications.
arXiv Detail & Related papers (2024-03-17T07:57:08Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting [55.71424195454963]
Spec-Gaussian is an approach that utilizes an anisotropic spherical Gaussian appearance field instead of spherical harmonics.
Our experimental results demonstrate that our method surpasses existing approaches in terms of rendering quality.
This improvement extends the applicability of 3D GS to handle intricate scenarios with specular and anisotropic surfaces.
arXiv Detail & Related papers (2024-02-24T17:22:15Z) - NeuSG: Neural Implicit Surface Reconstruction with 3D Gaussian Splatting
Guidance [59.08521048003009]
We propose a neural implicit surface reconstruction pipeline with guidance from 3D Gaussian Splatting to recover highly detailed surfaces.
The advantage of 3D Gaussian Splatting is that it can generate dense point clouds with detailed structure.
We introduce a scale regularizer to pull the centers close to the surface by enforcing the 3D Gaussians to be extremely thin.
arXiv Detail & Related papers (2023-12-01T07:04:47Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
Recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed.
We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians.
We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering.
arXiv Detail & Related papers (2023-11-30T17:58:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.