GaussianPainter: Painting Point Cloud into 3D Gaussians with Normal Guidance
- URL: http://arxiv.org/abs/2412.17715v1
- Date: Mon, 23 Dec 2024 16:45:37 GMT
- Title: GaussianPainter: Painting Point Cloud into 3D Gaussians with Normal Guidance
- Authors: Jingqiu Zhou, Lue Fan, Xuesong Chen, Linjiang Huang, Si Liu, Hongsheng Li,
- Abstract summary: We present GaussianPainter, the first method to paint a point cloud into 3D Gaussians given a reference image.
Our method addresses the non-uniqueness problem inherent in the large parameter space of 3D Gaussian splatting.
- Score: 43.97159590077809
- License:
- Abstract: In this paper, we present GaussianPainter, the first method to paint a point cloud into 3D Gaussians given a reference image. GaussianPainter introduces an innovative feed-forward approach to overcome the limitations of time-consuming test-time optimization in 3D Gaussian splatting. Our method addresses a critical challenge in the field: the non-uniqueness problem inherent in the large parameter space of 3D Gaussian splatting. This space, encompassing rotation, anisotropic scales, and spherical harmonic coefficients, introduces the challenge of rendering similar images from substantially different Gaussian fields. As a result, feed-forward networks face instability when attempting to directly predict high-quality Gaussian fields, struggling to converge on consistent parameters for a given output. To address this issue, we propose to estimate a surface normal for each point to determine its Gaussian rotation. This strategy enables the network to effectively predict the remaining Gaussian parameters in the constrained space. We further enhance our approach with an appearance injection module, incorporating reference image appearance into Gaussian fields via a multiscale triplane representation. Our method successfully balances efficiency and fidelity in 3D Gaussian generation, achieving high-quality, diverse, and robust 3D content creation from point clouds in a single forward pass.
Related papers
- Pushing Rendering Boundaries: Hard Gaussian Splatting [72.28941128988292]
3D Gaussian Splatting (3DGS) has demonstrated impressive Novel View Synthesis (NVS) results in a real-time rendering manner.
We propose Hard Gaussian Splatting, dubbed HGS, which considers multi-view significant positional gradients and rendering errors to grow hard Gaussians.
Our method achieves state-of-the-art rendering quality while maintaining real-time efficiency.
arXiv Detail & Related papers (2024-12-06T07:42:47Z) - SmileSplat: Generalizable Gaussian Splats for Unconstrained Sparse Images [91.28365943547703]
A novel generalizable Gaussian Splatting method, SmileSplat, is proposed to reconstruct pixel-aligned Gaussian surfels for diverse scenarios.
The proposed method achieves state-of-the-art performance in various 3D vision tasks.
arXiv Detail & Related papers (2024-11-27T05:52:28Z) - PixelGaussian: Generalizable 3D Gaussian Reconstruction from Arbitrary Views [116.10577967146762]
PixelGaussian is an efficient framework for learning generalizable 3D Gaussian reconstruction from arbitrary views.
Our method achieves state-of-the-art performance with good generalization to various numbers of views.
arXiv Detail & Related papers (2024-10-24T17:59:58Z) - GaussianForest: Hierarchical-Hybrid 3D Gaussian Splatting for Compressed Scene Modeling [40.743135560583816]
We introduce the Gaussian-Forest modeling framework, which hierarchically represents a scene as a forest of hybrid 3D Gaussians.
Experiments demonstrate that Gaussian-Forest not only maintains comparable speed and quality but also achieves a compression rate surpassing 10 times.
arXiv Detail & Related papers (2024-06-13T02:41:11Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF) is a novel approach for efficient, high-quality, and adaptive surface reconstruction in scenes.
GOF is derived from ray-tracing-based volume rendering of 3D Gaussians.
GOF surpasses existing 3DGS-based methods in surface reconstruction and novel view synthesis.
arXiv Detail & Related papers (2024-04-16T17:57:19Z) - CoherentGS: Sparse Novel View Synthesis with Coherent 3D Gaussians [18.42203035154126]
We introduce a structured Gaussian representation that can be controlled in 2D image space.
We then constraint the Gaussians, in particular their position, and prevent them from moving independently during optimization.
We demonstrate significant improvements compared to the state-of-the-art sparse-view NeRF-based approaches on a variety of scenes.
arXiv Detail & Related papers (2024-03-28T15:27:13Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting [55.71424195454963]
Spec-Gaussian is an approach that utilizes an anisotropic spherical Gaussian appearance field instead of spherical harmonics.
Our experimental results demonstrate that our method surpasses existing approaches in terms of rendering quality.
This improvement extends the applicability of 3D GS to handle intricate scenarios with specular and anisotropic surfaces.
arXiv Detail & Related papers (2024-02-24T17:22:15Z) - GaussianShader: 3D Gaussian Splatting with Shading Functions for
Reflective Surfaces [45.15827491185572]
We present a novel method that applies a simplified shading function on 3D Gaussians to enhance the neural rendering in scenes with reflective surfaces.
Experiments show that GaussianShader strikes a commendable balance between efficiency and visual quality.
arXiv Detail & Related papers (2023-11-29T17:22:26Z) - SplatArmor: Articulated Gaussian splatting for animatable humans from
monocular RGB videos [15.74530749823217]
We propose SplatArmor, a novel approach for recovering detailed and animatable human models by armoring' a parameterized body model with 3D Gaussians.
Our approach represents the human as a set of 3D Gaussians within a canonical space, whose articulation is defined by extending the skinning of the underlying SMPL geometry.
We show compelling results on the ZJU MoCap and People Snapshot datasets, which underscore the effectiveness of our method for controllable human synthesis.
arXiv Detail & Related papers (2023-11-17T18:47:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.