Understanding and Improving In-Context Learning on Vision-language
Models
- URL: http://arxiv.org/abs/2311.18021v1
- Date: Wed, 29 Nov 2023 19:08:11 GMT
- Title: Understanding and Improving In-Context Learning on Vision-language
Models
- Authors: Shuo Chen, Zhen Han, Bailan He, Mark Buckley, Philip Torr, Volker
Tresp, Jindong Gu
- Abstract summary: In-context learning (ICL) on large language models (LLMs) has received great attention, and this technique can be applied to vision-language models (VLMs)
This study investigates the significance of both visual and language information.
We propose a simple yet effective approach, termed Mixed Modality In-Context Example Selection (MMICES)
- Score: 42.7212469140844
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, in-context learning (ICL) on large language models (LLMs) has
received great attention, and this technique can also be applied to
vision-language models (VLMs) built upon LLMs. These VLMs can respond to
queries by conditioning responses on a series of multimodal demonstrations,
which comprise images, queries, and answers. Though ICL has been extensively
studied on LLMs, its research on VLMs remains limited. The inclusion of
additional visual information in the demonstrations motivates the following
research questions: which of the two modalities in the demonstration is more
significant? How can we select effective multimodal demonstrations to enhance
ICL performance? This study investigates the significance of both visual and
language information. Our findings indicate that ICL in VLMs is predominantly
driven by the textual information in the demonstrations whereas the visual
information in the demonstrations barely affects the ICL performance.
Subsequently, we provide an understanding of the findings by analyzing the
model information flow and comparing model inner states given different ICL
settings. Motivated by our analysis, we propose a simple yet effective
approach, termed Mixed Modality In-Context Example Selection (MMICES), which
considers both visual and language modalities when selecting demonstrations and
shows better ICL performance. Extensive experiments are conducted to support
our findings, understanding, and improvement of the ICL performance of VLMs.
Related papers
- Order Matters: Exploring Order Sensitivity in Multimodal Large Language Models [15.622219099903067]
We find that changing the order of multimodal input can cause the model's performance to fluctuate between advanced performance and random guessing.
This phenomenon exists in both single-modality (text-only or image-only) and mixed-modality (image-text-pair) contexts.
We propose a new metric, Position-Invariant Accuracy (PIA), to address order bias in MLLM evaluation.
arXiv Detail & Related papers (2024-10-22T13:05:11Z) - AIM: Let Any Multi-modal Large Language Models Embrace Efficient In-Context Learning [15.770849688170477]
In-context learning (ICL) facilitates Large Language Models exhibiting emergent ability on downstream tasks without updating billions of parameters.
Most primary MLLMs are only trained on single-image datasets, making them unable to read multi-modal demonstrations.
We propose a general and light-weighted framework textbfAIM to tackle the mentioned problems through textbfAggregating textbfImage information of textbfMultimodal demonstrations to the dense latent space of the corresponding linguistic part.
arXiv Detail & Related papers (2024-06-11T08:12:43Z) - NoteLLM-2: Multimodal Large Representation Models for Recommendation [71.87790090964734]
Large Language Models (LLMs) have demonstrated exceptional proficiency in text understanding and embedding tasks.
Their potential in multimodal representation, particularly for item-to-item (I2I) recommendations, remains underexplored.
We propose an end-to-end fine-tuning method that customizes the integration of any existing LLMs and vision encoders for efficient multimodal representation.
arXiv Detail & Related papers (2024-05-27T03:24:01Z) - What Makes Multimodal In-Context Learning Work? [58.48612721156335]
We present a framework for investigating Multimodal ICL (M-ICL) in the context of Large Multimodal Models.
M-ICL primarily relies on text-driven mechanisms, showing little to no influence from the image modality.
We identify several biases and limitations of M-ICL that warrant consideration prior to deployment.
arXiv Detail & Related papers (2024-04-24T08:50:45Z) - MMICL: Empowering Vision-language Model with Multi-Modal In-Context Learning [42.68425777473114]
Vision-language models (VLMs) enhanced by large language models (LLMs) have grown exponentially in popularity.
We introduce vision-language Model with Multi-Modal In-Context Learning (MMICL), a new approach to allow the VLM to deal with multi-modal inputs efficiently.
Our experiments confirm that MMICL achieves new state-of-the-art zero-shot performance on a wide range of general vision-language tasks.
arXiv Detail & Related papers (2023-09-14T17:59:17Z) - A Survey on Multimodal Large Language Models [71.63375558033364]
Multimodal Large Language Model (MLLM) represented by GPT-4V has been a new rising research hotspot.
This paper aims to trace and summarize the recent progress of MLLMs.
arXiv Detail & Related papers (2023-06-23T15:21:52Z) - Macaw-LLM: Multi-Modal Language Modeling with Image, Audio, Video, and
Text Integration [50.94902442781148]
We propose a novel multi-modal large language model (LLM) that seamlessly integrates visual, audio, and textual information.
Macaw-LLM consists of three main components: a modality module for encoding multi-modal data, a cognitive module for harnessing pretrained LLMs, and an alignment module for harmonizing diverse representations.
We construct a large-scale multi-modal instruction dataset in terms of multi-turn dialogue, including 69K image instances and 50K video instances.
arXiv Detail & Related papers (2023-06-15T12:45:25Z) - mPLUG-Owl: Modularization Empowers Large Language Models with Multimodality [95.76661165594884]
mPLUG-Owl is a training paradigm that equips large language models (LLMs) with multi-modal abilities.
The training paradigm involves a two-stage method for aligning image and text, which learns visual knowledge with the assistance of LLM.
Experimental results show that our model outperforms existing multi-modal models.
arXiv Detail & Related papers (2023-04-27T13:27:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.