Enhancing Data-Assimilation in CFD using Graph Neural Networks
- URL: http://arxiv.org/abs/2311.18027v1
- Date: Wed, 29 Nov 2023 19:11:40 GMT
- Title: Enhancing Data-Assimilation in CFD using Graph Neural Networks
- Authors: Michele Quattromini, Michele Alessandro Bucci, Stefania Cherubini,
Onofrio Semeraro
- Abstract summary: We present a novel machine learning approach for data assimilation applied in fluid mechanics, based on adjoint-optimization augmented by Graph Neural Networks (GNNs) models.
We obtain our results using direct numerical simulations based on a Finite Element Method (FEM) solver; a two-fold interface between the GNN model and the solver allows the GNN's predictions to be incorporated into post-processing steps of the FEM analysis.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel machine learning approach for data assimilation applied in
fluid mechanics, based on adjoint-optimization augmented by Graph Neural
Networks (GNNs) models. We consider as baseline the Reynolds-Averaged
Navier-Stokes (RANS) equations, where the unknown is the meanflow and a closure
model based on the Reynolds-stress tensor is required for correctly computing
the solution. An end-to-end process is cast; first, we train a GNN model for
the closure term. Second, the GNN model is introduced in the training process
of data assimilation, where the RANS equations act as a physics constraint for
a consistent prediction. We obtain our results using direct numerical
simulations based on a Finite Element Method (FEM) solver; a two-fold interface
between the GNN model and the solver allows the GNN's predictions to be
incorporated into post-processing steps of the FEM analysis. The proposed
scheme provides an excellent reconstruction of the meanflow without any
features selection; preliminary results show promising generalization
properties over unseen flow configurations.
Related papers
- Learning from Linear Algebra: A Graph Neural Network Approach to Preconditioner Design for Conjugate Gradient Solvers [42.69799418639716]
Deep learning models may be used to precondition residuals during iteration of such linear solvers as the conjugate gradient (CG) method.
Neural network models require an enormous number of parameters to approximate well in this setup.
In our work, we recall well-established preconditioners from linear algebra and use them as a starting point for training the GNN.
arXiv Detail & Related papers (2024-05-24T13:44:30Z) - Interpretable A-posteriori Error Indication for Graph Neural Network Surrogate Models [0.0]
This work introduces an interpretability enhancement procedure for graph neural networks (GNNs)
The end result is an interpretable GNN model that isolates regions in physical space, corresponding to sub-graphs, that are intrinsically linked to the forecasting task.
The interpretable GNNs can also be used to identify, during inference, graph nodes that correspond to a majority of the anticipated forecasting error.
arXiv Detail & Related papers (2023-11-13T18:37:07Z) - Identification of vortex in unstructured mesh with graph neural networks [0.0]
We present a Graph Neural Network (GNN) based model with U-Net architecture to identify the vortex in CFD results on unstructured meshes.
A vortex auto-labeling method is proposed to label vortex regions in 2D CFD meshes.
arXiv Detail & Related papers (2023-11-11T12:10:16Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
The volume of fluid (VoF) method is widely used in multi-phase flow simulations to track and locate the interface between two immiscible fluids.
A major bottleneck of the VoF method is the interface reconstruction step due to its high computational cost and low accuracy on unstructured grids.
We propose a machine learning enhanced VoF method based on Graph Neural Networks (GNN) to accelerate the interface reconstruction on general unstructured meshes.
arXiv Detail & Related papers (2022-07-12T17:07:46Z) - Invertible Neural Networks for Graph Prediction [22.140275054568985]
In this work, we address conditional generation using deep invertible neural networks.
We adopt an end-to-end training approach since our objective is to address prediction and generation in the forward and backward processes at once.
arXiv Detail & Related papers (2022-06-02T17:28:33Z) - GCN-FFNN: A Two-Stream Deep Model for Learning Solution to Partial
Differential Equations [3.5665681694253903]
This paper introduces a novel two-stream deep model based on graph convolutional network (GCN) architecture and feed-forward neural networks (FFNN)
The proposed GCN-FFNN model learns from two types of input representations, i.e. grid and graph data, obtained via the discretization of the PDE domain.
The obtained numerical results demonstrate the applicability and efficiency of the proposed GCN-FFNN model over individual GCN and FFNN models.
arXiv Detail & Related papers (2022-04-28T19:16:31Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
We propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach.
The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems.
arXiv Detail & Related papers (2020-12-21T17:39:51Z) - Improving predictions of Bayesian neural nets via local linearization [79.21517734364093]
We argue that the Gauss-Newton approximation should be understood as a local linearization of the underlying Bayesian neural network (BNN)
Because we use this linearized model for posterior inference, we should also predict using this modified model instead of the original one.
We refer to this modified predictive as "GLM predictive" and show that it effectively resolves common underfitting problems of the Laplace approximation.
arXiv Detail & Related papers (2020-08-19T12:35:55Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.