Generalizable data-driven turbulence closure modeling on unstructured grids with differentiable physics
- URL: http://arxiv.org/abs/2307.13533v2
- Date: Fri, 22 Nov 2024 19:02:10 GMT
- Title: Generalizable data-driven turbulence closure modeling on unstructured grids with differentiable physics
- Authors: Hojin Kim, Varun Shankar, Venkatasubramanian Viswanathan, Romit Maulik,
- Abstract summary: We introduce a framework for embedding deep learning models within a generic finite element solver to solve the Navier-Stokes equations.
We validate our method for flow over a backwards-facing step and test its performance on novel geometries.
We show that our GNN-based closure model may be learned in a data-limited scenario by interpreting closure modeling as a solver-constrained optimization.
- Score: 1.8749305679160366
- License:
- Abstract: Differentiable physical simulators are proving to be valuable tools for developing data-driven models in computational fluid dynamics (CFD). These simulators enable end-to-end training of machine learning (ML) models embedded within CFD solvers. This paradigm enables novel algorithms which combine the generalization power and low cost of physics-based simulations with the flexibility and automation of deep learning methods. In this study, we introduce a framework for embedding deep learning models within a generic finite element solver to solve the Navier-Stokes equations, specifically applying this approach to learn a subgrid scale closure with a graph neural network (GNN). We validate our method for flow over a backwards-facing step and test its performance on novel geometries, demonstrating the ability to generalize to novel geometries without sacrificing stability. Additionally, we show that our GNN-based closure model may be learned in a data-limited scenario by interpreting closure modeling as a solver-constrained optimization. Our end-to-end learning paradigm demonstrates a viable pathway for physically consistent and generalizable data-driven closure modeling across complex geometries.
Related papers
- A domain decomposition-based autoregressive deep learning model for unsteady and nonlinear partial differential equations [2.7755345520127936]
We propose a domain-decomposition-based deep learning (DL) framework, named CoMLSim, for accurately modeling unsteady and nonlinear partial differential equations (PDEs)
The framework consists of two key components: (a) a convolutional neural network (CNN)-based autoencoder architecture and (b) an autoregressive model composed of fully connected layers.
arXiv Detail & Related papers (2024-08-26T17:50:47Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML method integrates scientific principles and physical laws into deep neural networks to model seismic responses of nonlinear structures.
Manipulating the equation of motion helps learn system nonlinearities and confines solutions within physically interpretable results.
Result handles complex data better than existing physics-guided LSTM models and outperforms other non-physics data-driven networks.
arXiv Detail & Related papers (2024-02-28T02:16:03Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
Deep Neural Network Network (DNN) models are used for programming purposes.
In this paper we examine the use of convex neural recovery models.
We show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
We also show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
arXiv Detail & Related papers (2023-12-19T23:04:56Z) - Enhancing Data-Assimilation in CFD using Graph Neural Networks [0.0]
We present a novel machine learning approach for data assimilation applied in fluid mechanics, based on adjoint-optimization augmented by Graph Neural Networks (GNNs) models.
We obtain our results using direct numerical simulations based on a Finite Element Method (FEM) solver; a two-fold interface between the GNN model and the solver allows the GNN's predictions to be incorporated into post-processing steps of the FEM analysis.
arXiv Detail & Related papers (2023-11-29T19:11:40Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
We propose two deep learning models that fully automate shape parameterization for aerodynamic shape optimization.
Both models are optimized to parameterize via deep geometric learning to embed human prior knowledge into learned geometric patterns.
We perform shape optimization experiments on 2D airfoils and discuss the applicable scenarios for the two models.
arXiv Detail & Related papers (2023-05-03T13:45:40Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Sobolev training of thermodynamic-informed neural networks for smoothed
elasto-plasticity models with level set hardening [0.0]
We introduce a deep learning framework designed to train smoothed elastoplasticity models with interpretable components.
By recasting the yield function as an evolving level set, we introduce a machine learning approach to predict the solutions of the Hamilton-Jacobi equation.
arXiv Detail & Related papers (2020-10-15T22:43:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.