論文の概要: Self-Driving Telescopes: Autonomous Scheduling of Astronomical
Observation Campaigns with Offline Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2311.18094v1
- Date: Wed, 29 Nov 2023 21:23:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-01 18:37:20.803996
- Title: Self-Driving Telescopes: Autonomous Scheduling of Astronomical
Observation Campaigns with Offline Reinforcement Learning
- Title(参考訳): 自律型望遠鏡:オフライン強化学習による天文観測キャンペーンの自律スケジューリング
- Authors: Franco Terranova, M. Voetberg, Brian Nord, Amanda Pagul
- Abstract要約: 我々は、ストーンエッジ天文台(SEO)の観測スケジュールを最適化するために、シミュレーションデータを用いてDeep Q-Network(DQN)の複数の実装をテスト、比較する。
DQNは,テストセットの各状態における達成可能な最大報酬の87%以上-6%の報酬を得られることを示す。
これは、特定の天文学的課題に対するオフラインRLアルゴリズムの最初の比較であり、そのような比較と評価を行うための最初のオープンソースフレームワークである。
- 参考スコア(独自算出の注目度): 0.6976905094072174
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern astronomical experiments are designed to achieve multiple scientific
goals, from studies of galaxy evolution to cosmic acceleration. These goals
require data of many different classes of night-sky objects, each of which has
a particular set of observational needs. These observational needs are
typically in strong competition with one another. This poses a challenging
multi-objective optimization problem that remains unsolved. The effectiveness
of Reinforcement Learning (RL) as a valuable paradigm for training autonomous
systems has been well-demonstrated, and it may provide the basis for
self-driving telescopes capable of optimizing the scheduling for astronomy
campaigns. Simulated datasets containing examples of interactions between a
telescope and a discrete set of sky locations on the celestial sphere can be
used to train an RL model to sequentially gather data from these several
locations to maximize a cumulative reward as a measure of the quality of the
data gathered. We use simulated data to test and compare multiple
implementations of a Deep Q-Network (DQN) for the task of optimizing the
schedule of observations from the Stone Edge Observatory (SEO). We combine
multiple improvements on the DQN and adjustments to the dataset, showing that
DQNs can achieve an average reward of 87%+-6% of the maximum achievable reward
in each state on the test set. This is the first comparison of offline RL
algorithms for a particular astronomical challenge and the first open-source
framework for performing such a comparison and assessment task.
- Abstract(参考訳): 現代の天文学実験は、銀河進化の研究から宇宙加速まで、複数の科学的目標を達成するように設計されている。
これらの目標には、様々な種類の夜空物体のデータが必要であり、それぞれが特定の観測ニーズを持っている。
これらの観測ニーズは、典型的には互いに強い競合関係にある。
これは未解決の多目的最適化問題を引き起こす。
自律システムの訓練に有用なパラダイムとしての強化学習(rl)の有効性は十分に評価されており、天文学キャンペーンのスケジューリングを最適化できる自律型望遠鏡の基礎となるかもしれない。
望遠鏡と天球上の空の離散的な位置の相互作用の例を含むシミュレーションデータセットは、RLモデルを訓練してこれらの場所からデータを順次収集し、収集されたデータの質の尺度として累積報酬を最大化することができる。
我々は、ストーンエッジ観測所(SEO)の観測スケジュールを最適化するために、シミュレーションデータを用いてディープQネットワーク(DQN)の複数の実装をテスト、比較する。
DQNの複数の改善とデータセットの調整を組み合わせることで、DQNはテストセットの各状態における達成可能な最大報酬の87%以上-6%の報酬を得られることを示す。
これは、特定の天文学的課題に対するオフラインRLアルゴリズムの最初の比較であり、そのような比較と評価を行うための最初のオープンソースフレームワークである。
関連論文リスト
- Towards Satellite Non-IID Imagery: A Spectral Clustering-Assisted Federated Learning Approach [29.593406320684448]
低軌道(LEO)衛星は、様々なモノのインターネット(IoT)アプリケーションを実現するために、豊富な地球観測データ(EOD)を集めることができる。
効率的なEDD処理機構を実現するためには,1) 衛星と地上局の接続が間欠的であるため,大規模なデータを地上に送信することなく観測データを処理すること,2) 非独立で同一の(非IID)衛星データを処理すること,の課題を検討する必要がある。
軌道を用いたスペクトルクラスタリングによるクラスタリング型自己知識蒸留(OSC-FSKD)を提案する。
論文 参考訳(メタデータ) (2024-10-17T14:36:58Z) - Earth Observation Satellite Scheduling with Graph Neural Networks [1.1684839631276702]
本稿では,グラフニューラルネットワーク(GNN)と深部強化学習(DRL)に基づく観測結果の選択とスケジューリングを行う新しい手法を提案する。
シミュレーションにより,より大規模な実世界のインスタンスに一般化し,従来の手法と比較して非常に競争力のある性能で学習できることが示唆された。
論文 参考訳(メタデータ) (2024-08-27T13:10:26Z) - CUDC: A Curiosity-Driven Unsupervised Data Collection Method with
Adaptive Temporal Distances for Offline Reinforcement Learning [62.58375643251612]
本稿では,Curiosity-driven Unsupervised Data Collection (CUDC)法を提案する。
この適応的な到達性機構により、特徴表現は多様化することができ、エージェントは、好奇心で高品質なデータを集めるために自分自身をナビゲートすることができる。
実験的に、CUDCはDeepMindコントロールスイートの様々なダウンストリームオフラインRLタスクにおいて、既存の教師なし手法よりも効率と学習性能が優れている。
論文 参考訳(メタデータ) (2023-12-19T14:26:23Z) - Accelerating exploration and representation learning with offline
pre-training [52.6912479800592]
1つのオフラインデータセットから2つの異なるモデルを別々に学習することで、探索と表現の学習を改善することができることを示す。
ノイズコントラスト推定と補助報酬モデルを用いて状態表現を学習することで、挑戦的なNetHackベンチマークのサンプル効率を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2023-03-31T18:03:30Z) - Semi-Supervised Domain Adaptation for Cross-Survey Galaxy Morphology
Classification and Anomaly Detection [57.85347204640585]
We developed a Universal Domain Adaptation method DeepAstroUDA。
異なるタイプのクラスオーバーラップしたデータセットに適用することができる。
初めて、我々は2つの非常に異なる観測データセットに対するドメイン適応の有効利用を実演した。
論文 参考訳(メタデータ) (2022-11-01T18:07:21Z) - Improving Astronomical Time-series Classification via Data Augmentation
with Generative Adversarial Networks [1.2891210250935146]
本稿では,GAN(Generative Adrial Networks)に基づくデータ拡張手法を提案する。
変動星の分類精度は、合成データによるトレーニングや実データによるテストで著しく向上する。
論文 参考訳(メタデータ) (2022-05-13T16:39:54Z) - First Full-Event Reconstruction from Imaging Atmospheric Cherenkov
Telescope Real Data with Deep Learning [55.41644538483948]
チェレンコフ望遠鏡アレイは、地上のガンマ線天文学の未来である。
地上で作られた最初のプロトタイプ望遠鏡であるLarge Size Telescope 1は現在、最初の科学データを収集している。
我々は、深層畳み込みニューラルネットワークに基づくフルイベント再構築の開発とその実データへの適用を初めて提示する。
論文 参考訳(メタデータ) (2021-05-31T12:51:42Z) - DeepMerge II: Building Robust Deep Learning Algorithms for Merging
Galaxy Identification Across Domains [0.0]
天文学では、ニューラルネットワークはしばしばシミュレーションデータで訓練され、望遠鏡の観測に使用されます。
従来の深層学習アルゴリズムと比較して,各領域適応手法の追加により分類器の性能が向上することを示した。
この2つの例は、遠方の銀河の2つのIllustris-1シミュレーションデータセットと、近くの銀河のシミュレーションデータとSloan Digital Sky Surveyの観測データである。
論文 参考訳(メタデータ) (2021-03-02T00:24:10Z) - Batch Exploration with Examples for Scalable Robotic Reinforcement
Learning [63.552788688544254]
BEE(Batch Exploration with Examples)は、重要状態の画像の少ない数の人間がガイドする状態空間の関連領域を探索する。
BEEは、シミュレーションと本物のフランカロボットの両方で、視覚ベースの操作に挑戦することができる。
論文 参考訳(メタデータ) (2020-10-22T17:49:25Z) - A Maximum Independent Set Method for Scheduling Earth Observing
Satellite Constellations [41.013477422930755]
本稿では,衛星スケジューリング問題の解法として,実現不可能なグラフ表現を生成する手法を提案する。
光衛星のスカイサット星座と、最大24個の衛星のシミュレートされた星座の、要求された最大10,000の撮像位置のシナリオでテストされている。
論文 参考訳(メタデータ) (2020-08-15T19:32:21Z) - ClusterVO: Clustering Moving Instances and Estimating Visual Odometry
for Self and Surroundings [54.33327082243022]
ClusterVOはステレオビジュアルオドメトリーで、エゴと周囲の固いクラスタ/オブジェクトの両方の動きを同時にクラスタし、推定する。
以前のソリューションでは、バッチ入力やシーン構造や動的オブジェクトモデルへの事前の指示に頼っていたが、ClusterVOは一般的にオンラインであり、屋内のシーン理解や自律運転など、さまざまなシナリオで使用することができる。
論文 参考訳(メタデータ) (2020-03-29T09:06:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。