Uncertainty Guided Global Memory Improves Multi-Hop Question Answering
- URL: http://arxiv.org/abs/2311.18151v1
- Date: Wed, 29 Nov 2023 23:45:57 GMT
- Title: Uncertainty Guided Global Memory Improves Multi-Hop Question Answering
- Authors: Alsu Sagirova, Mikhail Burtsev
- Abstract summary: We propose a two-stage method that first collects relevant information over the entire document to the memory and then combines it with local context to solve the task.
Our experimental results show that fine-tuning a pre-trained model with memory-augmented input, including the most certain global elements, improves the model's performance.
- Score: 3.7013865226473848
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformers have become the gold standard for many natural language
processing tasks and, in particular, for multi-hop question answering (MHQA).
This task includes processing a long document and reasoning over the multiple
parts of it. The landscape of MHQA approaches can be classified into two
primary categories. The first group focuses on extracting supporting evidence,
thereby constraining the QA model's context to predicted facts. Conversely, the
second group relies on the attention mechanism of the long input encoding model
to facilitate multi-hop reasoning. However, attention-based token
representations lack explicit global contextual information to connect
reasoning steps. To address these issues, we propose GEMFormer, a two-stage
method that first collects relevant information over the entire document to the
memory and then combines it with local context to solve the task. Our
experimental results show that fine-tuning a pre-trained model with
memory-augmented input, including the most certain global elements, improves
the model's performance on three MHQA datasets compared to the baseline. We
also found that the global explicit memory contains information from supporting
facts required for the correct answer.
Related papers
- Generalization v.s. Memorization: Tracing Language Models' Capabilities Back to Pretraining Data [76.90128359866462]
Large language models (LLMs) have sparked debate over whether they genuinely generalize to unseen tasks or rely on memorizing vast amounts of pretraining data.
We introduce an extended concept of memorization, distributional memorization, which measures the correlation between the LLM output probabilities and the pretraining data frequency.
This study demonstrates that memorization plays a larger role in simpler, knowledge-intensive tasks, while generalization is the key for harder, reasoning-based tasks.
arXiv Detail & Related papers (2024-07-20T21:24:40Z) - Generate-then-Ground in Retrieval-Augmented Generation for Multi-hop Question Answering [45.82437926569949]
Multi-Hop Question Answering tasks present a significant challenge for large language models.
We introduce a novel generate-then-ground (GenGround) framework to solve a multi-hop question.
arXiv Detail & Related papers (2024-06-21T06:26:38Z) - Improving Question Generation with Multi-level Content Planning [70.37285816596527]
This paper addresses the problem of generating questions from a given context and an answer, specifically focusing on questions that require multi-hop reasoning across an extended context.
We propose MultiFactor, a novel QG framework based on multi-level content planning. Specifically, MultiFactor includes two components: FA-model, which simultaneously selects key phrases and generates full answers, and Q-model which takes the generated full answer as an additional input to generate questions.
arXiv Detail & Related papers (2023-10-20T13:57:01Z) - Memory Injections: Correcting Multi-Hop Reasoning Failures during
Inference in Transformer-Based Language Models [4.343604069244352]
We propose an approach to pinpoint and rectify multi-hop reasoning failures through targeted memory injections on attention heads.
We show that a simple, efficient, and targeted memory injection into a key attention layer can often increase the probability of the desired next token in multi-hop tasks, by up to 424%.
arXiv Detail & Related papers (2023-09-11T16:39:30Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
Multi-hop Question Answering over Knowledge Graph(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question.
We propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning.
arXiv Detail & Related papers (2022-12-02T04:08:09Z) - How Well Do Multi-hop Reading Comprehension Models Understand Date
Information? [31.243088887839257]
The ability of multi-hop models to perform step-by-step reasoning when finding an answer to a comparison question remains unclear.
It is also unclear how questions about the internal reasoning process are useful for training and evaluating question-answering (QA) systems.
arXiv Detail & Related papers (2022-10-11T07:24:07Z) - MGA-VQA: Multi-Granularity Alignment for Visual Question Answering [75.55108621064726]
Learning to answer visual questions is a challenging task since the multi-modal inputs are within two feature spaces.
We propose Multi-Granularity Alignment architecture for Visual Question Answering task (MGA-VQA)
Our model splits alignment into different levels to achieve learning better correlations without needing additional data and annotations.
arXiv Detail & Related papers (2022-01-25T22:30:54Z) - Question-Aware Memory Network for Multi-hop Question Answering in
Human-Robot Interaction [5.49601869466872]
We propose question-aware memory network for multi-hop question answering, named QA2MN, to update the attention on question timely in the reasoning process.
We evaluate QA2MN on PathQuestion and WorldCup2014, two representative datasets for complex multi-hop question answering.
arXiv Detail & Related papers (2021-04-27T13:32:41Z) - Dense-Caption Matching and Frame-Selection Gating for Temporal
Localization in VideoQA [96.10612095576333]
We propose a video question answering model which effectively integrates multi-modal input sources and finds the temporally relevant information to answer questions.
Our model is also comprised of dual-level attention (word/object and frame level), multi-head self-cross-integration for different sources (video and dense captions), and which pass more relevant information to gates.
We evaluate our model on the challenging TVQA dataset, where each of our model components provides significant gains, and our overall model outperforms the state-of-the-art by a large margin.
arXiv Detail & Related papers (2020-05-13T16:35:27Z) - Semantic Graphs for Generating Deep Questions [98.5161888878238]
We propose a novel framework which first constructs a semantic-level graph for the input document and then encodes the semantic graph by introducing an attention-based GGNN (Att-GGNN)
On the HotpotQA deep-question centric dataset, our model greatly improves performance over questions requiring reasoning over multiple facts, leading to state-of-the-art performance.
arXiv Detail & Related papers (2020-04-27T10:52:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.