TrustMark: Universal Watermarking for Arbitrary Resolution Images
- URL: http://arxiv.org/abs/2311.18297v1
- Date: Thu, 30 Nov 2023 07:03:36 GMT
- Title: TrustMark: Universal Watermarking for Arbitrary Resolution Images
- Authors: Tu Bui, Shruti Agarwal, John Collomosse
- Abstract summary: Imperceptible digital watermarking is important in copyright protection, misinformation prevention and responsible generative GAN.
We propose a GAN-based watermarking method with novel design in architecture and introduce TrustMark-RM - a watermark remover method.
Our methods achieve state-of-art performance on 3 benchmarks comprising arbitrary encoded images.
- Score: 21.74309490023683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Imperceptible digital watermarking is important in copyright protection,
misinformation prevention, and responsible generative AI. We propose TrustMark
- a GAN-based watermarking method with novel design in architecture and
spatio-spectra losses to balance the trade-off between watermarked image
quality with the watermark recovery accuracy. Our model is trained with
robustness in mind, withstanding various in- and out-place perturbations on the
encoded image. Additionally, we introduce TrustMark-RM - a watermark remover
method useful for re-watermarking. Our methods achieve state-of-art performance
on 3 benchmarks comprising arbitrary resolution images.
Related papers
- ROBIN: Robust and Invisible Watermarks for Diffusion Models with Adversarial Optimization [15.570148419846175]
Existing watermarking methods face the challenge of balancing robustness and concealment.
This paper introduces a watermark hiding process to actively achieve concealment, thus allowing the embedding of stronger watermarks.
Experiments on various diffusion models demonstrate the watermark remains verifiable even under significant image tampering.
arXiv Detail & Related papers (2024-11-06T12:14:23Z) - De-mark: Watermark Removal in Large Language Models [59.00698153097887]
We present De-mark, an advanced framework designed to remove n-gram-based watermarks effectively.
Our method utilizes a novel querying strategy, termed random selection probing, which aids in assessing the strength of the watermark.
arXiv Detail & Related papers (2024-10-17T17:42:10Z) - Certifiably Robust Image Watermark [57.546016845801134]
Generative AI raises many societal concerns such as boosting disinformation and propaganda campaigns.
Watermarking AI-generated content is a key technology to address these concerns.
We propose the first image watermarks with certified robustness guarantees against removal and forgery attacks.
arXiv Detail & Related papers (2024-07-04T17:56:04Z) - Latent Watermark: Inject and Detect Watermarks in Latent Diffusion Space [7.082806239644562]
Existing methods face the dilemma of image quality and watermark robustness.
Watermarks with superior image quality usually have inferior robustness against attacks such as blurring and JPEG compression.
We propose Latent Watermark, which injects and detects watermarks in the latent diffusion space.
arXiv Detail & Related papers (2024-03-30T03:19:50Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
This paper introduces a robust and agile watermark detection framework, dubbed as RAW.
We employ a classifier that is jointly trained with the watermark to detect the presence of the watermark.
We show that the framework provides provable guarantees regarding the false positive rate for misclassifying a watermarked image.
arXiv Detail & Related papers (2024-01-23T22:00:49Z) - ClearMark: Intuitive and Robust Model Watermarking via Transposed Model
Training [50.77001916246691]
This paper introduces ClearMark, the first DNN watermarking method designed for intuitive human assessment.
ClearMark embeds visible watermarks, enabling human decision-making without rigid value thresholds.
It shows an 8,544-bit watermark capacity comparable to the strongest existing work.
arXiv Detail & Related papers (2023-10-25T08:16:55Z) - ReMark: Receptive Field based Spatial WaterMark Embedding Optimization
using Deep Network [23.357707056321534]
We investigate a novel deep learning-based architecture for embedding imperceptible watermarks.
The proposed method is robust against most common distortions on watermarks including collusive distortion.
arXiv Detail & Related papers (2023-05-11T13:21:29Z) - Supervised GAN Watermarking for Intellectual Property Protection [33.827150843939094]
We propose a watermarking method for Generative Adversarial Networks (GANs)
The aim is to watermark the GAN model so that any image generated by the GAN contains an invisible watermark (signature)
Results show that our method can effectively embed an invisible watermark inside the generated images.
arXiv Detail & Related papers (2022-09-07T20:52:05Z) - Certified Neural Network Watermarks with Randomized Smoothing [64.86178395240469]
We propose a certifiable watermarking method for deep learning models.
We show that our watermark is guaranteed to be unremovable unless the model parameters are changed by more than a certain l2 threshold.
Our watermark is also empirically more robust compared to previous watermarking methods.
arXiv Detail & Related papers (2022-07-16T16:06:59Z) - Watermarking Images in Self-Supervised Latent Spaces [75.99287942537138]
We revisit watermarking techniques based on pre-trained deep networks, in the light of self-supervised approaches.
We present a way to embed both marks and binary messages into their latent spaces, leveraging data augmentation at marking time.
arXiv Detail & Related papers (2021-12-17T15:52:46Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
We propose a novel watermark removal attack from a different perspective.
We design a simple yet powerful transformation algorithm by combining imperceptible pattern embedding and spatial-level transformations.
Our attack can bypass state-of-the-art watermarking solutions with very high success rates.
arXiv Detail & Related papers (2020-09-18T09:14:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.