On the Coexistence and Ensembling of Watermarks
- URL: http://arxiv.org/abs/2501.17356v1
- Date: Wed, 29 Jan 2025 00:37:06 GMT
- Title: On the Coexistence and Ensembling of Watermarks
- Authors: Aleksandar Petrov, Shruti Agarwal, Philip H. S. Torr, Adel Bibi, John Collomosse,
- Abstract summary: We find that various open-source watermarks can coexist with only minor impacts on image quality and decoding robustness.
We show how ensembling can increase the overall message capacity and enable new trade-offs between capacity, accuracy, robustness and image quality, without needing to retrain the base models.
- Score: 93.15379331904602
- License:
- Abstract: Watermarking, the practice of embedding imperceptible information into media such as images, videos, audio, and text, is essential for intellectual property protection, content provenance and attribution. The growing complexity of digital ecosystems necessitates watermarks for different uses to be embedded in the same media. However, to detect and decode all watermarks, they need to coexist well with one another. We perform the first study of coexistence of deep image watermarking methods and, contrary to intuition, we find that various open-source watermarks can coexist with only minor impacts on image quality and decoding robustness. The coexistence of watermarks also opens the avenue for ensembling watermarking methods. We show how ensembling can increase the overall message capacity and enable new trade-offs between capacity, accuracy, robustness and image quality, without needing to retrain the base models.
Related papers
- Dynamic watermarks in images generated by diffusion models [46.1135899490656]
High-fidelity text-to-image diffusion models have revolutionized visual content generation, but their widespread use raises significant ethical concerns.
We propose a novel multi-stage watermarking framework for diffusion models, designed to establish copyright and trace generated images back to their source.
Our work advances the field of AI-generated content security by providing a scalable solution for model ownership verification and misuse prevention.
arXiv Detail & Related papers (2025-02-13T03:23:17Z) - Certifiably Robust Image Watermark [57.546016845801134]
Generative AI raises many societal concerns such as boosting disinformation and propaganda campaigns.
Watermarking AI-generated content is a key technology to address these concerns.
We propose the first image watermarks with certified robustness guarantees against removal and forgery attacks.
arXiv Detail & Related papers (2024-07-04T17:56:04Z) - Evaluating Durability: Benchmark Insights into Multimodal Watermarking [36.12198778931536]
We study robustness of watermarked content generated by image and text generation models against common real-world image corruptions and text perturbations.
Our results could pave the way for the development of more robust watermarking techniques in the future.
arXiv Detail & Related papers (2024-06-06T03:57:08Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
This paper introduces a robust and agile watermark detection framework, dubbed as RAW.
We employ a classifier that is jointly trained with the watermark to detect the presence of the watermark.
We show that the framework provides provable guarantees regarding the false positive rate for misclassifying a watermarked image.
arXiv Detail & Related papers (2024-01-23T22:00:49Z) - T2IW: Joint Text to Image & Watermark Generation [74.20148555503127]
We introduce a novel task for the joint generation of text to image and watermark (T2IW)
This T2IW scheme ensures minimal damage to image quality when generating a compound image by forcing the semantic feature and the watermark signal to be compatible in pixels.
We demonstrate remarkable achievements in image quality, watermark invisibility, and watermark robustness, supported by our proposed set of evaluation metrics.
arXiv Detail & Related papers (2023-09-07T16:12:06Z) - ReMark: Receptive Field based Spatial WaterMark Embedding Optimization
using Deep Network [23.357707056321534]
We investigate a novel deep learning-based architecture for embedding imperceptible watermarks.
The proposed method is robust against most common distortions on watermarks including collusive distortion.
arXiv Detail & Related papers (2023-05-11T13:21:29Z) - Certified Neural Network Watermarks with Randomized Smoothing [64.86178395240469]
We propose a certifiable watermarking method for deep learning models.
We show that our watermark is guaranteed to be unremovable unless the model parameters are changed by more than a certain l2 threshold.
Our watermark is also empirically more robust compared to previous watermarking methods.
arXiv Detail & Related papers (2022-07-16T16:06:59Z) - Watermarking Images in Self-Supervised Latent Spaces [75.99287942537138]
We revisit watermarking techniques based on pre-trained deep networks, in the light of self-supervised approaches.
We present a way to embed both marks and binary messages into their latent spaces, leveraging data augmentation at marking time.
arXiv Detail & Related papers (2021-12-17T15:52:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.