論文の概要: On Exact Inversion of DPM-Solvers
- arxiv url: http://arxiv.org/abs/2311.18387v1
- Date: Thu, 30 Nov 2023 09:30:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-01 17:18:56.691825
- Title: On Exact Inversion of DPM-Solvers
- Title(参考訳): DPMソルバーの特殊反転について
- Authors: Seongmin Hong, Kyeonghyun Lee, Suh Yoon Jeon, Hyewon Bae, Se Young
Chun
- Abstract要約: 拡散確率モデル(DPM)は、現代の生成モデルにおいて重要な要素である。
DPMはレイテンシの低減と品質の大幅な向上を実現しているが、正確な逆の発見には困難が伴っている。
そこで本研究では, DPM解法に対する正確な逆変換について検討し, それらを実行するアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 11.997710793011464
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Diffusion probabilistic models (DPMs) are a key component in modern
generative models. DPM-solvers have achieved reduced latency and enhanced
quality significantly, but have posed challenges to find the exact inverse
(i.e., finding the initial noise from the given image). Here we investigate the
exact inversions for DPM-solvers and propose algorithms to perform them when
samples are generated by the first-order as well as higher-order DPM-solvers.
For each explicit denoising step in DPM-solvers, we formulated the inversions
using implicit methods such as gradient descent or forward step method to
ensure the robustness to large classifier-free guidance unlike the prior
approach using fixed-point iteration. Experimental results demonstrated that
our proposed exact inversion methods significantly reduced the error of both
image and noise reconstructions, greatly enhanced the ability to distinguish
invisible watermarks and well prevented unintended background changes
consistently during image editing. Project page:
\url{https://smhongok.github.io/inv-dpm.html}.
- Abstract(参考訳): 拡散確率モデル(DPM)は現代の生成モデルにおいて重要な要素である。
DPM解法は遅延を低減し、品質を大幅に向上させたが、正確な逆(すなわち、与えられた画像から最初のノイズを見つける)を見つけるのが困難であった。
そこで本研究では,DPM解法と高次DPM解法によってサンプルが生成される場合に,DPM解法を正確に逆転させるアルゴリズムを提案する。
dpmソルバの各明示的な分別ステップに対して,勾配降下法やフォワードステップ法といった暗黙的な手法を用いて逆変換を定式化し,固定点反復を用いた従来の手法と異なり,大きな分類器フリーガイダンスの頑健性を保証する。
実験の結果,提案手法は画像と雑音の双方の誤りを著しく低減し,目に見える透かしを識別する能力を大幅に向上し,画像編集中に意図しない背景変化を一定に防止した。
プロジェクトページ: \url{https://smhongok.github.io/inv-dpm.html}
関連論文リスト
- DPM-OT: A New Diffusion Probabilistic Model Based on Optimal Transport [26.713392774427653]
DPM-OTは高速DPMのための統合学習フレームワークであり、直接高速道路はOTマップで表される。
約10の関数評価で高品質なサンプルを生成することができる。
実験は、DPM-OTの有効性と利点を、速度と品質の観点から検証した。
論文 参考訳(メタデータ) (2023-07-21T02:28:54Z) - AdjointDPM: Adjoint Sensitivity Method for Gradient Backpropagation of Diffusion Probabilistic Models [103.41269503488546]
既存のカスタマイズ方法は、事前訓練された拡散確率モデルをユーザが提供する概念に合わせるために、複数の参照例にアクセスする必要がある。
本論文は、DPMカスタマイズの課題として、生成コンテンツ上で定義された差別化可能な指標が唯一利用可能な監督基準である場合に解決することを目的とする。
本稿では,拡散モデルから新しいサンプルを初めて生成するAdjointDPMを提案する。
次に、随伴感度法を用いて、損失の勾配をモデルのパラメータにバックプロパゲートする。
論文 参考訳(メタデータ) (2023-07-20T09:06:21Z) - DDGM: Solving inverse problems by Diffusive Denoising of Gradient-based
Minimization [4.209801809583906]
最近のトレンドは、畳み込みネットを訓練して画像をデノマイズし、このネットを逆問題解決の先駆けとして利用することである。
本稿では,従来の勾配に基づく復調誤差最小化と復調を併用した簡易な手法を提案する。
最大50段のデノナイジングステップで高い精度を達成できることが示される。
論文 参考訳(メタデータ) (2023-07-11T00:21:38Z) - DiffTAD: Temporal Action Detection with Proposal Denoising Diffusion [137.8749239614528]
そこで我々は,時間的行動検出(TAD)の新しい定式化を提案し,拡散を抑えるDiffTADを提案する。
入力されたランダムな時間的提案を考慮すれば、トリミングされていない長いビデオが与えられたアクションの提案を正確に得ることができる。
論文 参考訳(メタデータ) (2023-03-27T00:40:52Z) - CDPMSR: Conditional Diffusion Probabilistic Models for Single Image
Super-Resolution [91.56337748920662]
拡散確率モデル(DPM)は画像から画像への変換において広く採用されている。
単純だが自明なDPMベースの超解像後処理フレームワーク,すなわちcDPMSRを提案する。
本手法は, 定性的および定量的な結果の両面において, 先行試行を超越した手法である。
論文 参考訳(メタデータ) (2023-02-14T15:13:33Z) - Accelerating Diffusion Models via Early Stop of the Diffusion Process [114.48426684994179]
Denoising Diffusion Probabilistic Models (DDPM) は、様々な世代タスクにおいて優れたパフォーマンスを実現している。
実際には、DDPMは高品質なサンプルを得るために何十万ものデノナイジングステップを必要とすることが多い。
本稿では,DDPMの早期停止型DDPM(Early-Stopped DDPM, ES-DDPM)の原理的高速化戦略を提案する。
論文 参考訳(メタデータ) (2022-05-25T06:40:09Z) - Pseudo Numerical Methods for Diffusion Models on Manifolds [77.40343577960712]
Denoising Diffusion Probabilistic Models (DDPM) は、画像やオーディオサンプルなどの高品質なサンプルを生成することができる。
DDPMは最終的なサンプルを生成するために数百から数千のイテレーションを必要とする。
拡散モデル(PNDM)の擬似数値法を提案する。
PNDMは、1000段DDIM(20倍の高速化)と比較して、50段の精度で高品質な合成画像を生成することができる
論文 参考訳(メタデータ) (2022-02-20T10:37:52Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) は効率的で教師なしの後方サンプリング手法である。
DDRMの汎用性を、超高解像度、デブロアリング、インペイント、カラー化のためにいくつかの画像データセットに示す。
論文 参考訳(メタデータ) (2022-01-27T20:19:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。