論文の概要: Detecting and Corrupting Convolution-based Unlearnable Examples
- arxiv url: http://arxiv.org/abs/2311.18403v3
- Date: Tue, 10 Dec 2024 08:40:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:34:42.210725
- Title: Detecting and Corrupting Convolution-based Unlearnable Examples
- Title(参考訳): 畳み込みに基づく未知例の検出と破壊
- Authors: Minghui Li, Xianlong Wang, Zhifei Yu, Shengshan Hu, Ziqi Zhou, Longling Zhang, Leo Yu Zhang,
- Abstract要約: 畳み込みに基づく非学習可能な例(UE)では、クラスワイドな乗法的畳み込みノイズをトレーニングサンプルに適用し、モデルパフォーマンスを著しく改善する。
両線形インタポレーション(COIN)を用いて,これらのサンプルをランダム行列乗算により分解する,畳み込み型UEに対する最初の防御手法を提案する。
提案するCOINの一般化を評価するため,VUDAとHUDAという2つの畳み込み型UEを新たに設計し,畳み込み型UEの範囲を広げた。
- 参考スコア(独自算出の注目度): 15.397998038743529
- License:
- Abstract: Convolution-based unlearnable examples (UEs) employ class-wise multiplicative convolutional noise to training samples, severely compromising model performance. This fire-new type of UEs have successfully countered all defense mechanisms against UEs. The failure of such defenses can be attributed to the absence of norm constraints on convolutional noise, leading to severe blurring of image features. To address this, we first design an Edge Pixel-based Detector (EPD) to identify convolution-based UEs. Upon detection of them, we propose the first defense scheme against convolution-based UEs, COrrupting these samples via random matrix multiplication by employing bilinear INterpolation (COIN) such that disrupting the distribution of class-wise multiplicative noise. To evaluate the generalization of our proposed COIN, we newly design two convolution-based UEs called VUDA and HUDA to expand the scope of convolution-based UEs. Extensive experiments demonstrate the effectiveness of detection scheme EPD and that our defense COIN outperforms 11 state-of-the-art (SOTA) defenses, achieving a significant improvement on the CIFAR and ImageNet datasets.
- Abstract(参考訳): 畳み込みに基づく非学習可能な例(UE)では、クラスワイドな乗法的畳み込みノイズをトレーニングサンプルに適用し、モデルパフォーマンスを著しく改善する。
この火災の新しいタイプのUEは、UEに対する防御機構の全てに対処することに成功している。
このような防御の失敗は、畳み込み雑音の標準的制約が欠如していることによるものであり、画像の特徴が著しくぼやけている。
そこで我々は、まずEdge Pixelベースの検出器(EPD)を設計し、畳み込みベースのUEを識別する。
そこで本研究では, 畳み込み型UEに対する最初の防御手法を提案し, クラスワイド乗法雑音の分布を乱すような二線形インタポレーション(COIN)を用いて, ランダム行列乗法によりこれらのサンプルを分解する。
提案するCOINの一般化を評価するため,VUDAとHUDAという2つの畳み込み型UEを新たに設計し,畳み込み型UEの範囲を広げた。
大規模な実験では,検出方式EPDの有効性が実証され,防衛COINは11のSOTA(State-of-the-art)ディフェンスよりも優れており,CIFARとImageNetデータセットに大きな改善が達成されている。
関連論文リスト
- Purify Unlearnable Examples via Rate-Constrained Variational Autoencoders [101.42201747763178]
未学習例(UE)は、正しくラベル付けされたトレーニング例に微妙な修正を加えることで、テストエラーの最大化を目指している。
我々の研究は、効率的な事前学習浄化法を構築するための、新しいゆがみ機構を提供する。
論文 参考訳(メタデータ) (2024-05-02T16:49:25Z) - Prototypical Contrastive Learning through Alignment and Uniformity for
Recommendation [6.790779112538357]
提案するアンダーライン・アライメントとアンダーライン・ユニフォーマル性によるインダーライン型コントラスト学習について述べる。
具体的には、まず、原点グラフから異なる拡張点間の整合性を確保するために、潜時空間としてプロトタイプを提案する。
明示的な負の欠如は、インスタンスとプロトタイプ間の整合性損失を直接最適化することで、次元的な崩壊の問題が容易に生じることを意味する。
論文 参考訳(メタデータ) (2024-02-03T08:19:26Z) - Decoupled Prototype Learning for Reliable Test-Time Adaptation [50.779896759106784]
テスト時間適応(TTA)は、推論中にトレーニング済みのソースモデルをターゲットドメインに継続的に適応させるタスクである。
1つの一般的なアプローチは、推定擬似ラベルによるクロスエントロピー損失を伴う微調整モデルである。
本研究は, 各試料の分類誤差を最小化することで, クロスエントロピー損失の脆弱性がラベルノイズを引き起こすことを明らかにした。
本稿では,プロトタイプ中心の損失計算を特徴とする新しいDPL法を提案する。
論文 参考訳(メタデータ) (2024-01-15T03:33:39Z) - Diffusion-Based Particle-DETR for BEV Perception [94.88305708174796]
Bird-Eye-View (BEV)は、自律走行車(AV)における視覚知覚のための最も広く使われているシーンの1つである。
近年の拡散法は、視覚知覚のための不確実性モデリングに有望なアプローチを提供するが、BEVの広い範囲において、小さな物体を効果的に検出することができない。
本稿では,BEVにおける拡散パラダイムと最先端の3Dオブジェクト検出器を組み合わせることで,この問題に対処する。
論文 参考訳(メタデータ) (2023-12-18T09:52:14Z) - Advancing Adversarial Robustness Through Adversarial Logit Update [10.041289551532804]
敵の訓練と敵の浄化は最も広く認知されている防衛戦略の一つである。
そこで本稿では,新たな原則であるALU(Adversarial Logit Update)を提案する。
本手法は,幅広い敵攻撃に対する最先端手法と比較して,優れた性能を実現する。
論文 参考訳(メタデータ) (2023-08-29T07:13:31Z) - Universal Adversarial Defense in Remote Sensing Based on Pre-trained Denoising Diffusion Models [17.283914361697818]
深部ニューラルネットワーク(DNN)は、地球観測のための多数のAIアプリケーション(AI4EO)において重要なソリューションとして注目されている。
本稿では、リモートセンシング画像(UAD-RS)における新しいユニバーサル・ディフェンス・アプローチを提案する。
論文 参考訳(メタデータ) (2023-07-31T17:21:23Z) - Latent Feature Relation Consistency for Adversarial Robustness [80.24334635105829]
深層ニューラルネットワークは、人間の知覚できない敵のノイズを自然の例に付加する敵の例を予測するときに、誤分類が起こる。
textbfLatent textbfFeature textbfRelation textbfConsistency (textbfLFRC)を提案する。
LFRCは、潜在空間における逆例の関係を、自然例と整合性に制約する。
論文 参考訳(メタデータ) (2023-03-29T13:50:01Z) - Augment and Criticize: Exploring Informative Samples for Semi-Supervised
Monocular 3D Object Detection [64.65563422852568]
我々は、一般的な半教師付きフレームワークを用いて、難解な単分子3次元物体検出問題を改善する。
我々は、ラベルのないデータから豊富な情報的サンプルを探索する、新しい、シンプルで効果的なAugment and Criticize'フレームワークを紹介します。
3DSeMo_DLEと3DSeMo_FLEXと呼ばれる2つの新しい検出器は、KITTIのAP_3D/BEV(Easy)を3.5%以上改善した。
論文 参考訳(メタデータ) (2023-03-20T16:28:15Z) - Enhanced countering adversarial attacks via input denoising and feature
restoring [15.787838084050957]
ディープニューラルネットワーク(DNN)は、クリーン/オリジンサンプルにおいて知覚できない摂動を伴う敵の例/サンプル(AE)に対して脆弱である。
本稿では,IDFR(Input Denoising and Feature Restoring)による対向攻撃手法の強化について述べる。
提案したIDFRは, 凸船体最適化に基づく拡張型インプットデノイザ (ID) と隠れ型ロスィ特徴復元器 (FR) から構成される。
論文 参考訳(メタデータ) (2021-11-19T07:34:09Z) - Enhanced Principal Component Analysis under A Collaborative-Robust
Framework [89.28334359066258]
重み学習とロバストな損失を非自明な方法で組み合わせる,一般的な協調ロバスト重み学習フレームワークを提案する。
提案されたフレームワークでは、トレーニング中の重要度を示す適切なサンプルの一部のみがアクティブになり、エラーが大きい他のサンプルは無視されません。
特に、不活性化試料の負の効果はロバスト損失関数によって軽減される。
論文 参考訳(メタデータ) (2021-03-22T15:17:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。