On the convergence of adaptive first order methods: proximal gradient and alternating minimization algorithms
- URL: http://arxiv.org/abs/2311.18431v2
- Date: Wed, 15 May 2024 09:05:09 GMT
- Title: On the convergence of adaptive first order methods: proximal gradient and alternating minimization algorithms
- Authors: Puya Latafat, Andreas Themelis, Panagiotis Patrinos,
- Abstract summary: AdaPG$q,r$ is a framework that unifies and extends existing results by providing larger stepsize policies and improved lower bounds.
Different choices of the parameters $q$ and $r$ are discussed and the efficacy of the resulting methods is demonstrated through numerical simulations.
- Score: 4.307128674848627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building upon recent works on linesearch-free adaptive proximal gradient methods, this paper proposes adaPG$^{q,r}$, a framework that unifies and extends existing results by providing larger stepsize policies and improved lower bounds. Different choices of the parameters $q$ and $r$ are discussed and the efficacy of the resulting methods is demonstrated through numerical simulations. In an attempt to better understand the underlying theory, its convergence is established in a more general setting that allows for time-varying parameters. Finally, an adaptive alternating minimization algorithm is presented by exploring the dual setting. This algorithm not only incorporates additional adaptivity, but also expands its applicability beyond standard strongly convex settings.
Related papers
- Adaptive proximal algorithms for convex optimization under local
Lipschitz continuity of the gradient [4.478941279527423]
Backtracking linesearch is the de facto approach for minimizing continuously differentiable functions with locally Lipschitz gradient.
In recent years, it has been shown that in the convex setting it is possible to avoid linesearch altogether.
We propose an adaptive proximal gradient method, adaPG, that uses novel estimates of the local smoothness modulus.
arXiv Detail & Related papers (2023-01-11T12:19:28Z) - TiAda: A Time-scale Adaptive Algorithm for Nonconvex Minimax
Optimization [24.784754071913255]
Adaptive methods have shown their ability to adjust the stepsizes on the fly in a parameter-agnostic manner.
Current convergence analyses of gradient ascent for non-concave minimax problems require careful tuning of parameters.
arXiv Detail & Related papers (2022-10-31T17:05:36Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Meta-Regularization: An Approach to Adaptive Choice of the Learning Rate
in Gradient Descent [20.47598828422897]
We propose textit-Meta-Regularization, a novel approach for the adaptive choice of the learning rate in first-order descent methods.
Our approach modifies the objective function by adding a regularization term, and casts the joint process parameters.
arXiv Detail & Related papers (2021-04-12T13:13:34Z) - AI-SARAH: Adaptive and Implicit Stochastic Recursive Gradient Methods [7.486132958737807]
We present an adaptive variance reduced method with an implicit approach for adaptivity.
We provide convergence guarantees for finite-sum minimization problems and show a faster convergence than SARAH can be achieved if local geometry permits.
This algorithm implicitly computes step-size and efficiently estimates local Lipschitz smoothness of functions.
arXiv Detail & Related papers (2021-02-19T01:17:15Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
We introduce a framework for designing primal methods under the decentralized optimization setting where local functions are smooth and strongly convex.
Our approach consists of approximately solving a sequence of sub-problems induced by the accelerated augmented Lagrangian method.
When coupled with accelerated gradient descent, our framework yields a novel primal algorithm whose convergence rate is optimal and matched by recently derived lower bounds.
arXiv Detail & Related papers (2020-06-11T18:49:06Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Proximal Gradient Algorithm with Momentum and Flexible Parameter Restart
for Nonconvex Optimization [73.38702974136102]
Various types of parameter restart schemes have been proposed for accelerated algorithms to facilitate their practical convergence in rates.
In this paper, we propose an algorithm for solving nonsmooth problems.
arXiv Detail & Related papers (2020-02-26T16:06:27Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.