論文の概要: Combining deep generative models with extreme value theory for synthetic
hazard simulation: a multivariate and spatially coherent approach
- arxiv url: http://arxiv.org/abs/2311.18521v1
- Date: Thu, 30 Nov 2023 12:55:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-01 16:29:48.294486
- Title: Combining deep generative models with extreme value theory for synthetic
hazard simulation: a multivariate and spatially coherent approach
- Title(参考訳): 合成ハザードシミュレーションのための深部生成モデルと極値理論を組み合わせる-多変量および空間コヒーレントアプローチ
- Authors: Alison Peard, Jim Hall
- Abstract要約: GAN(Generative Adversarial Network)は、高次元設定でデータの分布を暗黙的に学習する能力のため、このような問題に適している。
我々は,ベンガル湾に面した日最大風速,波高,総降水量の依存構造をモデル化するために,GANを用いた。
一度訓練すれば、このモデルは何千もの現実的な複合危険事象を効率的に生成することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Climate hazards can cause major disasters when they occur simultaneously as
compound hazards. To understand the distribution of climate risk and inform
adaptation policies, scientists need to simulate a large number of physically
realistic and spatially coherent events. Current methods are limited by
computational constraints and the probabilistic spatial distribution of
compound events is not given sufficient attention. The bottleneck in current
approaches lies in modelling the dependence structure between variables, as
inference on parametric models suffers from the curse of dimensionality.
Generative adversarial networks (GANs) are well-suited to such a problem due to
their ability to implicitly learn the distribution of data in high-dimensional
settings. We employ a GAN to model the dependence structure for daily maximum
wind speed, significant wave height, and total precipitation over the Bay of
Bengal, combining this with traditional extreme value theory for controlled
extrapolation of the tails. Once trained, the model can be used to efficiently
generate thousands of realistic compound hazard events, which can inform
climate risk assessments for climate adaptation and disaster preparedness. The
method developed is flexible and transferable to other multivariate and spatial
climate datasets.
- Abstract(参考訳): 気候の危険は、複合的な危険として同時に起こると大きな災害を引き起こすことがある。
気候リスクの分布を理解し、適応ポリシーを伝えるためには、多くの物理的に現実的で空間的に一貫性のある事象をシミュレートする必要がある。
現在の手法は計算制約によって制限されており、複合事象の確率的空間分布は十分に注意を払わない。
現在のアプローチのボトルネックは、パラメトリックモデルの推論が次元の呪いに苦しむため、変数間の依存構造をモデル化することにある。
GAN(Generative Adversarial Network)は、高次元設定でデータの分布を暗黙的に学習する能力のため、このような問題に適している。
我々は,ベンガル湾に面した日次最大風速,波高,総降水量の依存構造をモデル化するためにGANを用いており,これを従来の極値理論と組み合わせて尾部の制御外挿を行った。
一度訓練すれば、このモデルは何千もの現実的な複合ハザードイベントを効率的に発生させ、気候適応や災害対応のための気候リスク評価に役立てることができる。
開発された方法は柔軟で、他の多変量および空間気候データセットに転送可能である。
関連論文リスト
- Discovering Latent Structural Causal Models from Spatio-Temporal Data [23.400027588427964]
SPACY(SPAtiotemporal Causal discoverY)は変分推論に基づく新しいフレームワークである。
SPACYは、合成データに対する最先端のベースラインよりも優れ、大きなグリッドに対してスケーラブルであり、現実世界の気候データから既知の重要な現象を識別する。
論文 参考訳(メタデータ) (2024-11-08T05:12:16Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Latent Diffusion Model for Generating Ensembles of Climate Simulations [2.144088660722956]
我々は、広範囲の気候シミュレーションに基づいて、新しい生成的深層学習アプローチを訓練する。
潜在空間表現を利用することで、我々のモデルは最小限のメモリを必要とする大規模なアンサンブルをオンザフライで迅速に生成できる。
論文 参考訳(メタデータ) (2024-07-02T08:59:24Z) - Predicting Cascading Failures with a Hyperparametric Diffusion Model [66.89499978864741]
拡散モデルのレンズによる電力グリッドのカスケード故障について検討する。
我々のモデルは、バイラル拡散原理と物理に基づく概念を統合する。
この拡散モデルはカスケード故障の痕跡から学習可能であることを示す。
論文 参考訳(メタデータ) (2024-06-12T02:34:24Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Climate Intervention Analysis using AI Model Guided by Statistical
Physics Principles [6.824166358727082]
変動散逸理論(FDT)として知られる統計物理学の原理を応用した新しい解法を提案する。
利用することで,地球系モデルによって生成された大規模なデータセットに符号化された情報を抽出することができる。
我々のモデルであるAiBEDOは、地球および地域表面の気候に対する放射摂動の複雑なマルチタイム効果を捉えることができる。
論文 参考訳(メタデータ) (2023-02-07T05:09:10Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Downscaling Extreme Rainfall Using Physical-Statistical Generative
Adversarial Learning [0.0]
我々は,降雨の詳細な空間的詳細を学習するために,物理と統計を生成フレームワークに組み込んだデータ駆動型ダウンスケーリング(スーパーレゾリューション)手法を開発した。
本手法は, 粗解(0.25円×0.25円)の気候モデルを高分解能(0.01円×0.01円)の降雨場に変換し, 不確実性を効果的に定量化する。
論文 参考訳(メタデータ) (2022-12-02T21:04:32Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
地球系モデル(ESM)は、気候変動シナリオの将来の予測を生成するためにしばしば用いられる。
妥協として、エミュレータはかなり安価であるが、ESMの複雑さを全て備えているわけではない。
本稿では, ESMエミュレータとして, 条件付き生成逆数ネットワーク(GAN)の使用を実証する。
論文 参考訳(メタデータ) (2020-11-23T20:13:37Z) - HECT: High-Dimensional Ensemble Consistency Testing for Climate Models [1.7587442088965226]
気候モデルは、気候変動が気候変動に与える影響を理解する上で重要な役割を担い、気候変動のリスクを軽減し、決定を通知する。
コミュニティアース・システム・モデル (CESM) のような大域的な気候モデルは、大気、陸、海、氷の相互作用を記述する数百万行のコードで非常に複雑である。
私たちの研究は、木に基づくアルゴリズムやディープニューラルネットワークのような確率論的手法を使って、高次元および人為的なデータの統計的に厳密な適合性テストを行います。
論文 参考訳(メタデータ) (2020-10-08T15:16:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。