End-to-end Autonomous Driving using Deep Learning: A Systematic Review
- URL: http://arxiv.org/abs/2311.18636v1
- Date: Sun, 27 Aug 2023 17:43:58 GMT
- Title: End-to-end Autonomous Driving using Deep Learning: A Systematic Review
- Authors: Apoorv Singh
- Abstract summary: End-to-end autonomous driving is a fully differentiable machine learning system that takes raw sensor input data and other metadata as prior information and directly outputs the ego vehicle's control signals or planned trajectories.
This paper attempts to systematically review all recent Machine Learning-based techniques to perform this end-to-end task, including, but not limited to, object detection, semantic scene understanding, object tracking, trajectory predictions, trajectory planning, vehicle control, social behavior, and communications.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: End-to-end autonomous driving is a fully differentiable machine learning
system that takes raw sensor input data and other metadata as prior information
and directly outputs the ego vehicle's control signals or planned trajectories.
This paper attempts to systematically review all recent Machine Learning-based
techniques to perform this end-to-end task, including, but not limited to,
object detection, semantic scene understanding, object tracking, trajectory
predictions, trajectory planning, vehicle control, social behavior, and
communications. This paper focuses on recent fully differentiable end-to-end
reinforcement learning and deep learning-based techniques. Our paper also
builds taxonomies of the significant approaches by sub-grouping them and
showcasing their research trends. Finally, this survey highlights the open
challenges and points out possible future directions to enlighten further
research on the topic.
Related papers
- Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
We propose a comprehensive approach to explore and analyze the causality of end-to-end autonomous driving.
Our work is the first to unveil the mystery of end-to-end autonomous driving and turn the black box into a white one.
arXiv Detail & Related papers (2024-07-09T04:56:11Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
Large language models (LLMs) have demonstrated abilities including understanding context, logical reasoning, and generating answers.
In this paper, we systematically review a research line about textitLarge Language Models for Autonomous Driving (LLM4AD).
arXiv Detail & Related papers (2023-11-02T07:23:33Z) - Machine Learning for Autonomous Vehicle's Trajectory Prediction: A
comprehensive survey, Challenges, and Future Research Directions [3.655021726150368]
We have examined over two hundred studies related to trajectory prediction in the context of AVs.
This review conducts a comprehensive evaluation of several deep learning-based techniques.
By identifying challenges in the existing literature and outlining potential research directions, this review significantly contributes to the advancement of knowledge in the domain of AV trajectory prediction.
arXiv Detail & Related papers (2023-07-12T10:20:19Z) - Recent Advancements in End-to-End Autonomous Driving using Deep
Learning: A Survey [9.385936248154987]
End-to-End driving is a promising paradigm as it circumvents the drawbacks associated with modular systems.
Recent developments in End-to-End autonomous driving are analyzed, and research is categorized based on underlying principles.
This paper assesses the state-of-the-art, identifies challenges, and explores future possibilities.
arXiv Detail & Related papers (2023-07-10T07:00:06Z) - End-to-end Autonomous Driving: Challenges and Frontiers [45.391430626264764]
We provide a comprehensive analysis of more than 270 papers, covering the motivation, roadmap, methodology, challenges, and future trends in end-to-end autonomous driving.
We delve into several critical challenges, including multi-modality, interpretability, causal confusion, robustness, and world models, amongst others.
We discuss current advancements in foundation models and visual pre-training, as well as how to incorporate these techniques within the end-to-end driving framework.
arXiv Detail & Related papers (2023-06-29T14:17:24Z) - Exploring Contextual Representation and Multi-Modality for End-to-End
Autonomous Driving [58.879758550901364]
Recent perception systems enhance spatial understanding with sensor fusion but often lack full environmental context.
We introduce a framework that integrates three cameras to emulate the human field of view, coupled with top-down bird-eye-view semantic data to enhance contextual representation.
Our method achieves displacement error by 0.67m in open-loop settings, surpassing current methods by 6.9% on the nuScenes dataset.
arXiv Detail & Related papers (2022-10-13T05:56:20Z) - 3D Object Detection for Autonomous Driving: A Comprehensive Survey [48.30753402458884]
3D object detection, which intelligently predicts the locations, sizes, and categories of the critical 3D objects near an autonomous vehicle, is an important part of a perception system.
This paper reviews the advances in 3D object detection for autonomous driving.
arXiv Detail & Related papers (2022-06-19T19:43:11Z) - Multimodal Detection of Unknown Objects on Roads for Autonomous Driving [4.3310896118860445]
We propose a novel pipeline to detect unknown objects.
We make use of lidar and camera data by combining state-of-the art detection models in a sequential manner.
arXiv Detail & Related papers (2022-05-03T10:58:41Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
Both politics and pandemics have recently provided ample motivation for the development of machine learning-enabled disinformation (a.k.a. fake news) detection algorithms.
Existing literature has focused primarily on the fully-automated case, but the resulting techniques cannot reliably detect disinformation on the varied topics, sources, and time scales required for military applications.
By leveraging an already-available analyst as a human-in-the-loop, canonical machine learning techniques of sentiment analysis, aspect-based sentiment analysis, and stance detection become plausible methods to use for a partially-automated disinformation detection system.
arXiv Detail & Related papers (2021-11-09T13:30:34Z) - A Survey of End-to-End Driving: Architectures and Training Methods [0.9449650062296824]
We take a deeper look on the so called end-to-end approaches for autonomous driving, where the entire driving pipeline is replaced with a single neural network.
We review the learning methods, input and output modalities, network architectures and evaluation schemes in end-to-end driving literature.
We conclude the review with an architecture that combines the most promising elements of the end-to-end autonomous driving systems.
arXiv Detail & Related papers (2020-03-13T17:42:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.