論文の概要: Targeted Reduction of Causal Models
- arxiv url: http://arxiv.org/abs/2311.18639v1
- Date: Thu, 30 Nov 2023 15:46:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-01 16:11:33.300182
- Title: Targeted Reduction of Causal Models
- Title(参考訳): 因果モデルのターゲット化
- Authors: Armin Keki\'c, Bernhard Sch\"olkopf, Michel Besserve
- Abstract要約: 因果機械学習は、シミュレーションにおける因果関係の関連性および解釈可能なパターンの発見に科学者を支援する可能性がある。
本稿では、複雑なモデルを特定の目標現象を説明するための簡潔な要因のセットに変換する方法であるTCR(Targeted Causal Reduction)を紹介する。
- 参考スコア(独自算出の注目度): 19.95147976128033
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Why does a phenomenon occur? Addressing this question is central to most
scientific inquiries based on empirical observations, and often heavily relies
on simulations of scientific models. As models become more intricate,
deciphering the causes behind these phenomena in high-dimensional spaces of
interconnected variables becomes increasingly challenging. Causal machine
learning may assist scientists in the discovery of relevant and interpretable
patterns of causation in simulations. We introduce Targeted Causal Reduction
(TCR), a method for turning complex models into a concise set of causal factors
that explain a specific target phenomenon. We derive an information theoretic
objective to learn TCR from interventional data or simulations and propose
algorithms to optimize this objective efficiently. TCR's ability to generate
interpretable high-level explanations from complex models is demonstrated on
toy and mechanical systems, illustrating its potential to assist scientists in
the study of complex phenomena in a broad range of disciplines.
- Abstract(参考訳): なぜある現象が起こるのか?
この疑問に対処することは、経験的な観察に基づくほとんどの科学的調査の中心であり、しばしば科学モデルのシミュレーションに大きく依存している。
モデルがより複雑化するにつれて、相互接続変数の高次元空間におけるこれらの現象の原因の解読がますます困難になる。
因果機械学習は、シミュレーションにおける因果関係の関連性および解釈可能なパターンの発見に科学者を支援する可能性がある。
本稿では、複雑なモデルを特定の目標現象を説明するための簡潔な要因セットに変換する方法であるTCR(Targeted Causal Reduction)を紹介する。
介入データやシミュレーションからtcrを学ぶための情報理論目標を導出し、この目標を効率的に最適化するためのアルゴリズムを提案する。
複雑なモデルから解釈可能なハイレベルな説明を生成するtcrの能力は、おもちゃや機械システムで実証され、幅広い分野の複雑な現象の研究を支援する可能性を示す。
関連論文リスト
- DAG-aware Transformer for Causal Effect Estimation [0.8192907805418583]
因果推論は、医療、経済学、社会科学などの分野における重要な課題である。
本稿では,これらの課題を克服する因果推論のためのトランスフォーマーを用いた新しい手法を提案する。
我々のモデルの中核となる革新は、注意機構に直接因果非巡回グラフ(DAG)を統合することである。
論文 参考訳(メタデータ) (2024-10-13T23:17:58Z) - Identifiable Causal Representation Learning: Unsupervised, Multi-View, and Multi-Environment [10.814585613336778]
因果表現学習は、機械学習のコアとなる強みと因果性を組み合わせることを目的としている。
この論文は、CRLが直接の監督なしに何が可能であるかを調査し、理論的基礎に寄与する。
論文 参考訳(メタデータ) (2024-06-19T09:14:40Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
因果表現学習は、観測された低レベルデータから潜在的な高レベル因果表現を明らかにすることを目的としている。
主な課題の1つは、識別可能性(identifiability)として知られるこれらの潜伏因果モデルを特定する信頼性の高い保証を提供することである。
論文 参考訳(メタデータ) (2023-10-24T07:46:10Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - Learning a Structural Causal Model for Intuition Reasoning in
Conversation [20.243323155177766]
NLP研究の重要な側面である推論は、一般的なモデルによって適切に対処されていない。
我々は、各発話がどのように情報チャネルを受信し、活性化するかを説明する会話認知モデル(CCM)を開発した。
変分推論を利用することで、暗黙的な原因の代用を探索し、その観測不可能性の問題に対処し、証拠の低い境界を通して発話の因果表現を再構築する。
論文 参考訳(メタデータ) (2023-05-28T13:54:09Z) - Causal Triplet: An Open Challenge for Intervention-centric Causal
Representation Learning [98.78136504619539]
Causal Tripletは、視覚的に複雑なシーンを特徴とする因果表現学習ベンチマークである。
この結果から,不整合表現やオブジェクト中心表現の知識によって構築されたモデルが,分散表現よりもはるかに優れていることを示す。
論文 参考訳(メタデータ) (2023-01-12T17:43:38Z) - Quantify the Causes of Causal Emergence: Critical Conditions of
Uncertainty and Asymmetry in Causal Structure [0.5372002358734439]
統計的および情報理論に基づく因果関係の調査は、大規模モデルに興味深い、価値のある課題を提起している。
本稿では,その発生の理論的制約として,因果関係の数値的条件を評価するための枠組みを提案する。
論文 参考訳(メタデータ) (2022-12-03T06:35:54Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
AIと因果関係の中心的な目標は、抽象表現と因果構造を共同で発見することである。
因果誘導を研究するための既存の環境は、複雑なタスク固有の因果グラフを持つため、この目的には適していない。
本研究の目的は,高次変数の学習表現と因果構造の研究を促進することである。
論文 参考訳(メタデータ) (2021-07-02T05:44:56Z) - ACRE: Abstract Causal REasoning Beyond Covariation [90.99059920286484]
因果誘導における現在の視覚システムの系統的評価のための抽象因果分析データセットについて紹介する。
Blicket実験における因果発見の研究の流れに触発され、独立シナリオと介入シナリオのいずれにおいても、以下の4種類の質問で視覚的推論システムに問い合わせる。
純粋なニューラルモデルは確率レベルのパフォーマンスの下で連想戦略に向かう傾向があるのに対し、ニューロシンボリックな組み合わせは後方ブロッキングの推論に苦しむ。
論文 参考訳(メタデータ) (2021-03-26T02:42:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。