Certified algorithms for equilibrium states of local quantum
Hamiltonians
- URL: http://arxiv.org/abs/2311.18706v1
- Date: Thu, 30 Nov 2023 16:59:59 GMT
- Title: Certified algorithms for equilibrium states of local quantum
Hamiltonians
- Authors: Hamza Fawzi, Omar Fawzi, Samuel O. Scalet
- Abstract summary: We develop algorithms for computing expectation values of observables in the equilibrium states of local quantum Hamiltonians.
In the thermodynamic limit of infinite lattices, this shows that expectation values of local observables can be approximated in finite time.
- Score: 11.479315794880343
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We design algorithms for computing expectation values of observables in the
equilibrium states of local quantum Hamiltonians, both at zero and positive
temperature. The algorithms are based on hierarchies of convex relaxations over
the positive semidefinite cone and the matrix relative entropy cone, and give
certified and converging upper and lower bounds on the desired expectation
value. In the thermodynamic limit of infinite lattices, this shows that
expectation values of local observables can be approximated in finite time,
which contrasts with recent undecidability results about properties of infinite
quantum lattice systems. In addition, when the Hamiltonian is commuting on a
2-dimensional lattice, we prove fast convergence of the hierarchy at high
temperature leading to a runtime guarantee for the algorithm that is polynomial
in the desired error.
Related papers
- Estimating quantum amplitudes can be exponentially improved [11.282486674587236]
Estimating quantum amplitudes is a fundamental task in quantum computing.
We present a novel framework for estimating quantum amplitudes by transforming pure states into their matrix forms.
Our framework achieves the standard quantum limit $epsilon-2$ and the Heisenberg limit $epsilon-1$, respectively.
arXiv Detail & Related papers (2024-08-25T04:35:53Z) - Mixed State Variational Quantum Eigensolver for the Estimation of
Expectation Values at Finite Temperature [0.0]
We introduce a novel hybrid quantum-classical algorithm for the near-term computation of expectation values in quantum systems at finite temperatures.
This is based on two stages: on the first one, a mixed state approximating a fiducial truncated density matrix is prepared through Variational Quantum Eigensolving (VQE) techniques.
This is then followed by a reweighting stage where the expectation values for observables of interest are computed.
arXiv Detail & Related papers (2024-01-30T17:29:58Z) - Algorithmic Cluster Expansions for Quantum Problems [0.0]
We establish a general framework for developing approximation algorithms for a class of counting problems.
We apply our framework to approximating probability amplitudes of a class of quantum circuits close to the identity.
We show that our algorithmic condition is almost optimal for expectation values and optimal for thermal expectation values in the sense of zero freeness.
arXiv Detail & Related papers (2023-06-15T09:11:48Z) - Sparse random Hamiltonians are quantumly easy [105.6788971265845]
A candidate application for quantum computers is to simulate the low-temperature properties of quantum systems.
This paper shows that, for most random Hamiltonians, the maximally mixed state is a sufficiently good trial state.
Phase estimation efficiently prepares states with energy arbitrarily close to the ground energy.
arXiv Detail & Related papers (2023-02-07T10:57:36Z) - Efficient learning of ground & thermal states within phases of matter [1.1470070927586014]
We consider two related tasks: (a) estimating a parameterisation of a given Gibbs state and expectation values of Lipschitz observables on this state; and (b) learning the expectation values of local observables within a thermal or quantum phase of matter.
arXiv Detail & Related papers (2023-01-30T14:39:51Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Growth of entanglement of generic states under dual-unitary dynamics [77.34726150561087]
Dual-unitary circuits are a class of locally-interacting quantum many-body systems.
In particular, they admit a class of solvable" initial states for which, in the thermodynamic limit, one can access the full non-equilibrium dynamics.
We show that in this case the entanglement increment during a time step is sub-maximal for finite times, however, it approaches the maximal value in the infinite-time limit.
arXiv Detail & Related papers (2022-07-29T18:20:09Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
This paper shows that graph spectral embedding using the random walk Laplacian produces vector representations which are completely corrected for node degree.
In the special case of a degree-corrected block model, the embedding concentrates about K distinct points, representing communities.
arXiv Detail & Related papers (2021-05-03T16:36:27Z) - The modified logarithmic Sobolev inequality for quantum spin systems:
classical and commuting nearest neighbour interactions [2.148535041822524]
We prove a strong exponential convergence in relative entropy of the system to equilibrium under a condition of spatial mixing.
We show that our notion of spatial mixing is a consequence of the recent quantum generalization of Dobrushin and Shlosman's complete analyticity of the free-energy at equilibrium.
Our results have wide-ranging applications in quantum information.
arXiv Detail & Related papers (2020-09-24T16:54:06Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.