FoundPose: Unseen Object Pose Estimation with Foundation Features
- URL: http://arxiv.org/abs/2311.18809v2
- Date: Fri, 19 Jul 2024 09:33:12 GMT
- Title: FoundPose: Unseen Object Pose Estimation with Foundation Features
- Authors: Evin Pınar Örnek, Yann Labbé, Bugra Tekin, Lingni Ma, Cem Keskin, Christian Forster, Tomas Hodan,
- Abstract summary: FoundPose is a model-based method for 6D pose estimation of unseen objects from a single RGB image.
The method can quickly onboard new objects using their 3D models without requiring any object- or task-specific training.
- Score: 11.32559845631345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose FoundPose, a model-based method for 6D pose estimation of unseen objects from a single RGB image. The method can quickly onboard new objects using their 3D models without requiring any object- or task-specific training. In contrast, existing methods typically pre-train on large-scale, task-specific datasets in order to generalize to new objects and to bridge the image-to-model domain gap. We demonstrate that such generalization capabilities can be observed in a recent vision foundation model trained in a self-supervised manner. Specifically, our method estimates the object pose from image-to-model 2D-3D correspondences, which are established by matching patch descriptors from the recent DINOv2 model between the image and pre-rendered object templates. We find that reliable correspondences can be established by kNN matching of patch descriptors from an intermediate DINOv2 layer. Such descriptors carry stronger positional information than descriptors from the last layer, and we show their importance when semantic information is ambiguous due to object symmetries or a lack of texture. To avoid establishing correspondences against all object templates, we develop an efficient template retrieval approach that integrates the patch descriptors into the bag-of-words representation and can promptly propose a handful of similarly looking templates. Additionally, we apply featuremetric alignment to compensate for discrepancies in the 2D-3D correspondences caused by coarse patch sampling. The resulting method noticeably outperforms existing RGB methods for refinement-free pose estimation on the standard BOP benchmark with seven diverse datasets and can be seamlessly combined with an existing render-and-compare refinement method to achieve RGB-only state-of-the-art results. Project page: evinpinar.github.io/foundpose.
Related papers
- Towards Human-Level 3D Relative Pose Estimation: Generalizable, Training-Free, with Single Reference [62.99706119370521]
Humans can easily deduce the relative pose of an unseen object, without label/training, given only a single query-reference image pair.
We propose a novel 3D generalizable relative pose estimation method by elaborating (i) with a 2.5D shape from an RGB-D reference, (ii) with an off-the-shelf differentiable, and (iii) with semantic cues from a pretrained model like DINOv2.
arXiv Detail & Related papers (2024-06-26T16:01:10Z) - FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects [55.77542145604758]
FoundationPose is a unified foundation model for 6D object pose estimation and tracking.
Our approach can be instantly applied at test-time to a novel object without fine-tuning.
arXiv Detail & Related papers (2023-12-13T18:28:09Z) - CheckerPose: Progressive Dense Keypoint Localization for Object Pose
Estimation with Graph Neural Network [66.24726878647543]
Estimating the 6-DoF pose of a rigid object from a single RGB image is a crucial yet challenging task.
Recent studies have shown the great potential of dense correspondence-based solutions.
We propose a novel pose estimation algorithm named CheckerPose, which improves on three main aspects.
arXiv Detail & Related papers (2023-03-29T17:30:53Z) - OnePose++: Keypoint-Free One-Shot Object Pose Estimation without CAD
Models [51.68715543630427]
OnePose relies on detecting repeatable image keypoints and is thus prone to failure on low-textured objects.
We propose a keypoint-free pose estimation pipeline to remove the need for repeatable keypoint detection.
A 2D-3D matching network directly establishes 2D-3D correspondences between the query image and the reconstructed point-cloud model.
arXiv Detail & Related papers (2023-01-18T17:47:13Z) - Semantic keypoint-based pose estimation from single RGB frames [64.80395521735463]
We present an approach to estimating the continuous 6-DoF pose of an object from a single RGB image.
The approach combines semantic keypoints predicted by a convolutional network (convnet) with a deformable shape model.
We show that our approach can accurately recover the 6-DoF object pose for both instance- and class-based scenarios.
arXiv Detail & Related papers (2022-04-12T15:03:51Z) - Templates for 3D Object Pose Estimation Revisited: Generalization to New
Objects and Robustness to Occlusions [79.34847067293649]
We present a method that can recognize new objects and estimate their 3D pose in RGB images even under partial occlusions.
It relies on a small set of training objects to learn local object representations.
We are the first to show generalization without retraining on the LINEMOD and Occlusion-LINEMOD datasets.
arXiv Detail & Related papers (2022-03-31T17:50:35Z) - Pose Estimation of Specific Rigid Objects [0.7931904787652707]
We address the problem of estimating the 6D pose of rigid objects from a single RGB or RGB-D input image.
This problem is of great importance to many application fields such as robotic manipulation, augmented reality, and autonomous driving.
arXiv Detail & Related papers (2021-12-30T14:36:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.