論文の概要: Can LLMs Patch Security Issues?
- arxiv url: http://arxiv.org/abs/2312.00024v3
- Date: Mon, 19 Feb 2024 06:06:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 04:20:53.884594
- Title: Can LLMs Patch Security Issues?
- Title(参考訳): LLMはセキュリティ問題に対処できるか?
- Authors: Kamel Alrashedy, Abdullah Aljasser
- Abstract要約: LLM(Large Language Models)は、コード生成に優れた習熟度を示している。
LLMはセキュリティ上の脆弱性や欠陥を含むコードを生成する。
そこで本稿では,Bandit からのフィードバックを受信するための LLM の利用について検討する。
- 参考スコア(独自算出の注目度): 0.26107298043931204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have shown impressive proficiency in code
generation. Nonetheless, similar to human developers, these models might
generate code that contains security vulnerabilities and flaws. Writing secure
code remains a substantial challenge, as vulnerabilities often arise during
interactions between programs and external systems or services, such as
databases and operating systems. In this paper, we propose a novel approach,
Feedback-Driven Solution Synthesis (FDSS), designed to explore the use of LLMs
in receiving feedback from Bandit, which is a static code analysis tool, and
then the LLMs generate potential solutions to resolve security vulnerabilities.
Each solution, along with the vulnerable code, is then sent back to the LLM for
code refinement. Our approach shows a significant improvement over the baseline
and outperforms existing approaches. Furthermore, we introduce a new dataset,
PythonSecurityEval, collected from real-world scenarios on Stack Overflow to
evaluate the LLMs' ability to generate secure code. Code and data are available
at \url{https://github.com/Kamel773/LLM-code-refine}
- Abstract(参考訳): 大規模言語モデル(llm)はコード生成に優れた能力を示している。
それでも、人間開発者と同様に、これらのモデルはセキュリティの脆弱性や欠陥を含むコードを生成する可能性がある。
セキュアなコードを書くことは依然として大きな課題であり、プログラムと外部システムやデータベースやオペレーティングシステムなどのサービスとのインタラクション中に脆弱性が発生することが多い。
本稿では,静的コード解析ツールであるBanditからフィードバックを受け取り,LLMがセキュリティ上の脆弱性を解決するための潜在的ソリューションを生成することを目的とした,フィードバック駆動型ソリューション合成(FDSS)という新しいアプローチを提案する。
脆弱性のあるコードとともに各ソリューションは、コードリファインメントのためにLLMに返される。
我々のアプローチは、ベースラインよりも大きな改善を示し、既存のアプローチよりも優れています。
さらに,stack overflow上の実世界のシナリオから収集した新しいデータセット pythonsecurityeval を導入して,セキュアなコードを生成する llms の能力を評価する。
コードとデータは \url{https://github.com/kamel773/llm-code-refine} で利用可能である。
関連論文リスト
- ProSec: Fortifying Code LLMs with Proactive Security Alignment [14.907702430331803]
コード固有の大規模言語モデル(LLM)のセキュリティは、まだ未調査のままである。
コードLLMをセキュアなコーディングプラクティスと整合させるために設計された,新たなセキュリティアライメントアプローチであるProSecを提案する。
実験の結果、ProSecでトレーニングされたモデルは以前の研究よりも29.2%から35.5%安全であることが示されている。
論文 参考訳(メタデータ) (2024-11-19T22:00:01Z) - Aligning LLMs to Be Robust Against Prompt Injection [55.07562650579068]
インジェクション攻撃に対してLCMをより堅牢にするための強力なツールとしてアライメントが有効であることを示す。
私たちのメソッド -- SecAlign -- は、最初に、プロンプトインジェクション攻撃をシミュレートしてアライメントデータセットを構築します。
実験の結果,SecAlign は LLM を大幅に強化し,モデルの実用性に悪影響を及ぼすことが示された。
論文 参考訳(メタデータ) (2024-10-07T19:34:35Z) - HexaCoder: Secure Code Generation via Oracle-Guided Synthetic Training Data [60.75578581719921]
大規模言語モデル(LLM)は、自動コード生成に大きな可能性を示している。
最近の研究は、多くのLLM生成コードが深刻なセキュリティ脆弱性を含んでいることを強調している。
我々は,LLMがセキュアなコードを生成する能力を高めるための新しいアプローチであるHexaCoderを紹介する。
論文 参考訳(メタデータ) (2024-09-10T12:01:43Z) - An Exploratory Study on Fine-Tuning Large Language Models for Secure Code Generation [17.69409515806874]
脆弱性修正コミットのデータセット上での微調整済みのLLMがセキュアなコード生成を促進するかどうかを探索研究する。
オープンソースのリポジトリから、確認済みの脆弱性のコード修正を収集することで、セキュアなコード生成のための微調整データセットをクロールしました。
我々の調査によると、微調整のLLMは、C言語で6.4%、C++言語で5.4%、セキュアなコード生成を改善することができる。
論文 参考訳(メタデータ) (2024-08-17T02:51:27Z) - Is Your AI-Generated Code Really Safe? Evaluating Large Language Models on Secure Code Generation with CodeSecEval [20.959848710829878]
大規模言語モデル(LLM)は、コード生成とコード修復に大きな進歩をもたらした。
しかし、GitHubのようなオープンソースのリポジトリから無防備なデータを使用したトレーニングは、セキュリティ上の脆弱性を必然的に伝播するリスクを増大させる。
我々は,コードLLMのセキュリティ面を正確に評価し,拡張することを目的とした総合的研究を提案する。
論文 参考訳(メタデータ) (2024-07-02T16:13:21Z) - Can We Trust Large Language Models Generated Code? A Framework for In-Context Learning, Security Patterns, and Code Evaluations Across Diverse LLMs [2.7138982369416866]
大規模言語モデル(LLM)は、ソフトウェア工学における自動コード生成に革命をもたらした。
しかし、生成されたコードのセキュリティと品質に関する懸念が持ち上がっている。
本研究は,LLMの行動学習をセキュアにするための枠組みを導入することで,これらの課題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-06-18T11:29:34Z) - An LLM-Assisted Easy-to-Trigger Backdoor Attack on Code Completion Models: Injecting Disguised Vulnerabilities against Strong Detection [17.948513691133037]
我々は,コード補完モデルに基づくLLM支援バックドアアタックフレームワークであるCodeBreakerを紹介した。
悪意のあるペイロードを最小限の変換でソースコードに直接統合することで、CodeBreakerは現在のセキュリティ対策に挑戦する。
論文 参考訳(メタデータ) (2024-06-10T22:10:05Z) - CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion [117.178835165855]
本稿では,自然言語入力をコード入力に変換するフレームワークであるCodeAttackを紹介する。
我々の研究は、コード入力に対するこれらのモデルの新たな、普遍的な安全性の脆弱性を明らかにした。
CodeAttackと自然言語の分布ギャップが大きくなると、安全性の一般化が弱くなる。
論文 参考訳(メタデータ) (2024-03-12T17:55:38Z) - Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs [59.596335292426105]
本稿では,大規模な言語モデルにおけるセーフガードを評価するための,最初のオープンソースデータセットを収集する。
我々は、自動安全性評価において、GPT-4に匹敵する結果を得るために、BERTライクな分類器をいくつか訓練する。
論文 参考訳(メタデータ) (2023-08-25T14:02:12Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
大規模言語モデル(LLM)は、様々なアプリケーションに統合されつつある。
本稿では、プロンプトインジェクション攻撃を用いて、攻撃者が元の命令をオーバーライドし、制御を採用する方法を示す。
我々は、コンピュータセキュリティの観点から、影響や脆弱性を体系的に調査する包括的な分類法を導出する。
論文 参考訳(メタデータ) (2023-02-23T17:14:38Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。