Stealthy and Persistent Unalignment on Large Language Models via Backdoor Injections
- URL: http://arxiv.org/abs/2312.00027v2
- Date: Sun, 9 Jun 2024 03:27:40 GMT
- Title: Stealthy and Persistent Unalignment on Large Language Models via Backdoor Injections
- Authors: Yuanpu Cao, Bochuan Cao, Jinghui Chen,
- Abstract summary: We show that it is possible to conduct stealthy and persistent unalignment on large language models via backdoor injections.
Our proposed stealthy and persistent unalignment can successfully pass the safety evaluation while maintaining strong persistence against re-alignment defense.
- Score: 17.49244337226907
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent developments in Large Language Models (LLMs) have manifested significant advancements. To facilitate safeguards against malicious exploitation, a body of research has concentrated on aligning LLMs with human preferences and inhibiting their generation of inappropriate content. Unfortunately, such alignments are often vulnerable: fine-tuning with a minimal amount of harmful data can easily unalign the target LLM. While being effective, such fine-tuning-based unalignment approaches also have their own limitations: (1) non-stealthiness, after fine-tuning, safety audits or red-teaming can easily expose the potential weaknesses of the unaligned models, thereby precluding their release/use. (2) non-persistence, the unaligned LLMs can be easily repaired through re-alignment, i.e., fine-tuning again with aligned data points. In this work, we show that it is possible to conduct stealthy and persistent unalignment on large language models via backdoor injections. We also provide a novel understanding on the relationship between the backdoor persistence and the activation pattern and further provide guidelines for potential trigger design. Through extensive experiments, we demonstrate that our proposed stealthy and persistent unalignment can successfully pass the safety evaluation while maintaining strong persistence against re-alignment defense.
Related papers
- AdvBDGen: Adversarially Fortified Prompt-Specific Fuzzy Backdoor Generator Against LLM Alignment [23.460024089845408]
We propose AdvBDGen, an adversarially fortified generative fine-tuning framework that automatically generates prompt-specific backdoors.
AdvBDGen employs a generator-discriminator pair, fortified by an adversary, to ensure the installability and stealthiness of backdoors.
arXiv Detail & Related papers (2024-10-15T05:05:56Z) - Root Defence Strategies: Ensuring Safety of LLM at the Decoding Level [10.658844160259104]
Large language models (LLMs) have demonstrated immense utility across various industries.
As LLMs advance, the risk of harmful outputs increases due to incorrect or malicious instruction prompts.
This paper examines the LLMs' capability to recognize harmful outputs, revealing and quantifying their proficiency in assessing the danger of previous tokens.
arXiv Detail & Related papers (2024-10-09T12:09:30Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
This study addresses a critical gap in safety tuning practices for Large Language Models (LLMs)
We introduce a novel approach, Decoupled Refusal Training (DeRTa), designed to empower LLMs to refuse compliance to harmful prompts at any response position.
DeRTa incorporates two novel components: (1) Maximum Likelihood Estimation with Harmful Response Prefix, which trains models to recognize and avoid unsafe content by appending a segment of harmful response to the beginning of a safe response, and (2) Reinforced Transition Optimization (RTO), which equips models with the ability to transition from potential harm to safety refusal consistently throughout the harmful
arXiv Detail & Related papers (2024-07-12T09:36:33Z) - BEEAR: Embedding-based Adversarial Removal of Safety Backdoors in Instruction-tuned Language Models [57.5404308854535]
Safety backdoor attacks in large language models (LLMs) enable the stealthy triggering of unsafe behaviors while evading detection during normal interactions.
We present BEEAR, a mitigation approach leveraging the insight that backdoor triggers induce relatively uniform drifts in the model's embedding space.
Our bi-level optimization method identifies universal embedding perturbations that elicit unwanted behaviors and adjusts the model parameters to reinforce safe behaviors against these perturbations.
arXiv Detail & Related papers (2024-06-24T19:29:47Z) - DeAL: Decoding-time Alignment for Large Language Models [59.63643988872571]
Large Language Models (LLMs) are nowadays expected to generate content aligned with human preferences.
We propose DeAL, a framework that allows the user to customize reward functions and enables Detime Alignment of LLMs.
Our experiments show that we can DeAL with fine-grained trade-offs, improve adherence to alignment objectives, and address residual gaps in LLMs.
arXiv Detail & Related papers (2024-02-05T06:12:29Z) - Vaccine: Perturbation-aware Alignment for Large Language Models against Harmful Fine-tuning Attack [7.653580388741887]
A few harmful data uploaded by users can easily trick the finetuning to produce an alignment-broken model.
We propose Vaccine, a perturbation-aware alignment technique to mitigate the security risk of users finetuning.
arXiv Detail & Related papers (2024-02-02T02:56:50Z) - InferAligner: Inference-Time Alignment for Harmlessness through
Cross-Model Guidance [56.184255657175335]
We develop textbfInferAligner, a novel inference-time alignment method that utilizes cross-model guidance for harmlessness alignment.
Experimental results show that our method can be very effectively applied to domain-specific models in finance, medicine, and mathematics.
It significantly diminishes the Attack Success Rate (ASR) of both harmful instructions and jailbreak attacks, while maintaining almost unchanged performance in downstream tasks.
arXiv Detail & Related papers (2024-01-20T10:41:03Z) - Fine-tuning Aligned Language Models Compromises Safety, Even When Users
Do Not Intend To! [88.90694413503614]
We find that the safety alignment of LLMs can be compromised by fine-tuning.
We jailbreak GPT-3.5 Turbo's safety guardrails by fine-tuning it on only 10 such examples.
We advocate for further research efforts toward reinforcing safety protocols for the custom fine-tuning of aligned LLMs.
arXiv Detail & Related papers (2023-10-05T17:12:17Z) - Shadow Alignment: The Ease of Subverting Safely-Aligned Language Models [102.63973600144308]
Open-source large language models can be easily subverted to generate harmful content.
Experiments across 8 models released by 5 different organizations demonstrate the effectiveness of shadow alignment attack.
This study serves as a clarion call for a collective effort to overhaul and fortify the safety of open-source LLMs against malicious attackers.
arXiv Detail & Related papers (2023-10-04T16:39:31Z) - Defending Against Alignment-Breaking Attacks via Robustly Aligned LLM [23.16217797677075]
We introduce a Robustly Aligned LLM (RA-LLM) to defend against potential alignment-breaking attacks.
RA-LLM can successfully defend against both state-of-the-art adversarial prompts and popular handcrafted jailbreaking prompts.
arXiv Detail & Related papers (2023-09-18T02:07:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.