Scalable Bayesian uncertainty quantification with data-driven priors for radio interferometric imaging
- URL: http://arxiv.org/abs/2312.00125v3
- Date: Wed, 31 Jul 2024 10:51:03 GMT
- Title: Scalable Bayesian uncertainty quantification with data-driven priors for radio interferometric imaging
- Authors: TobĂas I. Liaudat, Matthijs Mars, Matthew A. Price, Marcelo Pereyra, Marta M. Betcke, Jason D. McEwen,
- Abstract summary: Next-generation radio interferometrics have the potential to unlock scientific discoveries thanks to their unprecedented angular resolution and sensitivity.
One key to unlocking their potential resides in handling the deluge and complexity of incoming data.
This work proposes a method coined QuantifAI to address uncertainty quantification in radio-interferometric imaging.
- Score: 5.678038945350452
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Next-generation radio interferometers like the Square Kilometer Array have the potential to unlock scientific discoveries thanks to their unprecedented angular resolution and sensitivity. One key to unlocking their potential resides in handling the deluge and complexity of incoming data. This challenge requires building radio interferometric imaging methods that can cope with the massive data sizes and provide high-quality image reconstructions with uncertainty quantification (UQ). This work proposes a method coined QuantifAI to address UQ in radio-interferometric imaging with data-driven (learned) priors for high-dimensional settings. Our model, rooted in the Bayesian framework, uses a physically motivated model for the likelihood. The model exploits a data-driven convex prior, which can encode complex information learned implicitly from simulations and guarantee the log-concavity of the posterior. We leverage probability concentration phenomena of high-dimensional log-concave posteriors that let us obtain information about the posterior, avoiding MCMC sampling techniques. We rely on convex optimisation methods to compute the MAP estimation, which is known to be faster and better scale with dimension than MCMC sampling strategies. Our method allows us to compute local credible intervals, i.e., Bayesian error bars, and perform hypothesis testing of structure on the reconstructed image. In addition, we propose a novel blazing-fast method to compute pixel-wise uncertainties at different scales. We demonstrate our method by reconstructing radio-interferometric images in a simulated setting and carrying out fast and scalable UQ, which we validate with MCMC sampling. Our method shows an improved image quality and more meaningful uncertainties than the benchmark method based on a sparsity-promoting prior. QuantifAI's source code: https://github.com/astro-informatics/QuantifAI.
Related papers
- bit2bit: 1-bit quanta video reconstruction via self-supervised photon prediction [57.199618102578576]
We propose bit2bit, a new method for reconstructing high-quality image stacks at original resolution from sparse binary quantatemporal image data.
Inspired by recent work on Poisson denoising, we developed an algorithm that creates a dense image sequence from sparse binary photon data.
We present a novel dataset containing a wide range of real SPAD high-speed videos under various challenging imaging conditions.
arXiv Detail & Related papers (2024-10-30T17:30:35Z) - Uncertainty Quantification via Neural Posterior Principal Components [26.26693707762823]
Uncertainty quantification is crucial for the deployment of image restoration models in safety-critical domains.
We present a method for predicting the PCs of the posterior distribution for any input image, in a single forward pass of a neural network.
Our method reliably conveys instance-adaptive uncertainty directions, achieving uncertainty quantification comparable with posterior samplers.
arXiv Detail & Related papers (2023-09-27T09:51:29Z) - Deep Richardson-Lucy Deconvolution for Low-Light Image Deblurring [48.80983873199214]
We develop a data-driven approach to model the saturated pixels by a learned latent map.
Based on the new model, the non-blind deblurring task can be formulated into a maximum a posterior (MAP) problem.
To estimate high-quality deblurred images without amplified artifacts, we develop a prior estimation network.
arXiv Detail & Related papers (2023-08-10T12:53:30Z) - MOSAIC: Masked Optimisation with Selective Attention for Image
Reconstruction [0.5541644538483947]
We propose a novel compressive sensing framework to reconstruct images given any random selection of measurements.
MOSAIC incorporates an embedding technique to efficiently apply attention mechanisms on an encoded sequence of measurements.
A range of experiments validate our proposed architecture as a promising alternative for existing CS reconstruction methods.
arXiv Detail & Related papers (2023-06-01T17:05:02Z) - Microseismic source imaging using physics-informed neural networks with
hard constraints [4.07926531936425]
We propose a direct microseismic imaging framework based on physics-informed neural networks (PINNs)
We use the PINNs to represent a multi-frequency wavefield and then apply inverse Fourier transform to extract the source image.
We further apply our method to hydraulic fracturing monitoring field data, and demonstrate that our method can correctly image the source with fewer artifacts.
arXiv Detail & Related papers (2023-04-09T21:10:39Z) - Amortized Bayesian Inference of GISAXS Data with Normalizing Flows [0.10752246796855561]
We propose a simulation-based framework that combines variational auto-encoders and normalizing flows to estimate the posterior distribution of object parameters.
We demonstrate that our method reduces the inference cost by orders of magnitude while producing consistent results with ABC.
arXiv Detail & Related papers (2022-10-04T12:09:57Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - FOVEA: Foveated Image Magnification for Autonomous Navigation [53.69803081925454]
We propose an attentional approach that elastically magnifies certain regions while maintaining a small input canvas.
Our proposed method boosts the detection AP over standard Faster R-CNN, with and without finetuning.
On the autonomous driving datasets Argoverse-HD and BDD100K, we show our proposed method boosts the detection AP over standard Faster R-CNN, with and without finetuning.
arXiv Detail & Related papers (2021-08-27T03:07:55Z) - 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment
Feedback Loop [128.07841893637337]
Regression-based methods have recently shown promising results in reconstructing human meshes from monocular images.
Minor deviation in parameters may lead to noticeable misalignment between the estimated meshes and image evidences.
We propose a Pyramidal Mesh Alignment Feedback (PyMAF) loop to leverage a feature pyramid and rectify the predicted parameters.
arXiv Detail & Related papers (2021-03-30T17:07:49Z) - Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal
Solution Characterization for Computational Imaging [11.677576854233394]
We propose a variational deep probabilistic imaging approach to quantify reconstruction uncertainty.
Deep Probabilistic Imaging employs an untrained deep generative model to estimate a posterior distribution of an unobserved image.
arXiv Detail & Related papers (2020-10-27T17:23:09Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.