Amortized Bayesian Inference of GISAXS Data with Normalizing Flows
- URL: http://arxiv.org/abs/2210.01543v1
- Date: Tue, 4 Oct 2022 12:09:57 GMT
- Title: Amortized Bayesian Inference of GISAXS Data with Normalizing Flows
- Authors: Maksim Zhdanov, Lisa Randolph, Thomas Kluge, Motoaki Nakatsutsumi,
Christian Gutt, Marina Ganeva and Nico Hoffmann
- Abstract summary: We propose a simulation-based framework that combines variational auto-encoders and normalizing flows to estimate the posterior distribution of object parameters.
We demonstrate that our method reduces the inference cost by orders of magnitude while producing consistent results with ABC.
- Score: 0.10752246796855561
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Grazing-Incidence Small-Angle X-ray Scattering (GISAXS) is a modern imaging
technique used in material research to study nanoscale materials.
Reconstruction of the parameters of an imaged object imposes an ill-posed
inverse problem that is further complicated when only an in-plane GISAXS signal
is available. Traditionally used inference algorithms such as Approximate
Bayesian Computation (ABC) rely on computationally expensive scattering
simulation software, rendering analysis highly time-consuming. We propose a
simulation-based framework that combines variational auto-encoders and
normalizing flows to estimate the posterior distribution of object parameters
given its GISAXS data. We apply the inference pipeline to experimental data and
demonstrate that our method reduces the inference cost by orders of magnitude
while producing consistent results with ABC.
Related papers
- Optimized Linear Measurements for Inverse Problems using Diffusion-Based Image Generation [10.297832938258841]
We re-examine the problem of reconstructing a high-dimensional signal from a small set of linear measurements.
We show that optimizing the measurements for the SSIM perceptual loss leads to perceptually improved reconstruction.
arXiv Detail & Related papers (2024-05-22T20:38:58Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Scalable Bayesian uncertainty quantification with data-driven priors for radio interferometric imaging [5.678038945350452]
Next-generation radio interferometrics have the potential to unlock scientific discoveries thanks to their unprecedented angular resolution and sensitivity.
One key to unlocking their potential resides in handling the deluge and complexity of incoming data.
This work proposes a method coined QuantifAI to address uncertainty quantification in radio-interferometric imaging.
arXiv Detail & Related papers (2023-11-30T19:00:02Z) - Solving Linear Inverse Problems Provably via Posterior Sampling with
Latent Diffusion Models [98.95988351420334]
We present the first framework to solve linear inverse problems leveraging pre-trained latent diffusion models.
We theoretically analyze our algorithm showing provable sample recovery in a linear model setting.
arXiv Detail & Related papers (2023-07-02T17:21:30Z) - Poisson-Gaussian Holographic Phase Retrieval with Score-based Image
Prior [19.231581775644617]
We propose a new algorithm called "AWFS" that uses the accelerated Wirtinger flow (AWF) with a score function as generative prior.
We calculate the gradient of the log-likelihood function for PR and determine the Lipschitz constant.
We provide theoretical analysis that establishes a critical-point convergence guarantee for the proposed algorithm.
arXiv Detail & Related papers (2023-05-12T18:08:47Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Curvature regularization for Non-line-of-sight Imaging from
Under-sampled Data [5.591221518341613]
Non-line-of-sight (NLOS) imaging aims to reconstruct the three-dimensional hidden scenes from the data measured in the line-of-sight.
We propose novel NLOS reconstruction models based on curvature regularization.
We evaluate the proposed algorithms on both synthetic and real datasets.
arXiv Detail & Related papers (2023-01-01T14:10:43Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Low-rank statistical finite elements for scalable model-data synthesis [0.8602553195689513]
statFEM acknowledges a priori model misspecification, by embedding forcing within the governing equations.
The method reconstructs the observed data-generating processes with minimal loss of information.
This article overcomes this hurdle by embedding a low-rank approximation of the underlying dense covariance matrix.
arXiv Detail & Related papers (2021-09-10T09:51:43Z) - Quantum Algorithms for Data Representation and Analysis [68.754953879193]
We provide quantum procedures that speed-up the solution of eigenproblems for data representation in machine learning.
The power and practical use of these subroutines is shown through new quantum algorithms, sublinear in the input matrix's size, for principal component analysis, correspondence analysis, and latent semantic analysis.
Results show that the run-time parameters that do not depend on the input's size are reasonable and that the error on the computed model is small, allowing for competitive classification performances.
arXiv Detail & Related papers (2021-04-19T00:41:43Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
We propose to solve a model-based maximum-a-posterior problem to reconstruct multi-materials images with application to spectral CT.
In particular, we propose to solve a regularized optimization problem based on a plug-in image-denoising function.
We show numerical and experimental results for spectral CT materials decomposition.
arXiv Detail & Related papers (2021-03-25T15:20:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.