PyNeRF: Pyramidal Neural Radiance Fields
- URL: http://arxiv.org/abs/2312.00252v1
- Date: Thu, 30 Nov 2023 23:52:46 GMT
- Title: PyNeRF: Pyramidal Neural Radiance Fields
- Authors: Haithem Turki, Michael Zollh\"ofer, Christian Richardt, Deva Ramanan
- Abstract summary: We propose a simple modification to grid-based models by training model heads at different spatial grid resolutions.
At render time, we simply use coarser grids to render samples that cover larger volumes.
Compared to Mip-NeRF, we reduce error rates by 20% while training over 60x faster.
- Score: 51.25406129834537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Radiance Fields (NeRFs) can be dramatically accelerated by spatial
grid representations. However, they do not explicitly reason about scale and so
introduce aliasing artifacts when reconstructing scenes captured at different
camera distances. Mip-NeRF and its extensions propose scale-aware renderers
that project volumetric frustums rather than point samples but such approaches
rely on positional encodings that are not readily compatible with grid methods.
We propose a simple modification to grid-based models by training model heads
at different spatial grid resolutions. At render time, we simply use coarser
grids to render samples that cover larger volumes. Our method can be easily
applied to existing accelerated NeRF methods and significantly improves
rendering quality (reducing error rates by 20-90% across synthetic and
unbounded real-world scenes) while incurring minimal performance overhead (as
each model head is quick to evaluate). Compared to Mip-NeRF, we reduce error
rates by 20% while training over 60x faster.
Related papers
- NeRF-Casting: Improved View-Dependent Appearance with Consistent Reflections [57.63028964831785]
Recent works have improved NeRF's ability to render detailed specular appearance of distant environment illumination, but are unable to synthesize consistent reflections of closer content.
We address these issues with an approach based on ray tracing.
Instead of querying an expensive neural network for the outgoing view-dependent radiance at points along each camera ray, our model casts rays from these points and traces them through the NeRF representation to render feature vectors.
arXiv Detail & Related papers (2024-05-23T17:59:57Z) - Mip-Grid: Anti-aliased Grid Representations for Neural Radiance Fields [12.910072009005065]
We present mip-blur, a novel approach that integrates anti-aliasing techniques into grid-based representations for radiance fields.
The proposed method generates multi-scale grids by applying simple convolution operations over a shared grid representation and uses the scale coordinate to retrieve features at different scales from the generated multi-scale grids.
arXiv Detail & Related papers (2024-02-22T00:45:40Z) - HybridNeRF: Efficient Neural Rendering via Adaptive Volumetric Surfaces [71.1071688018433]
Neural radiance fields provide state-of-the-art view synthesis quality but tend to be slow to render.
We propose a method, HybridNeRF, that leverages the strengths of both representations by rendering most objects as surfaces.
We improve error rates by 15-30% while achieving real-time framerates (at least 36 FPS) for virtual-reality resolutions (2Kx2K)
arXiv Detail & Related papers (2023-12-05T22:04:49Z) - Efficient View Synthesis with Neural Radiance Distribution Field [61.22920276806721]
We propose a new representation called Neural Radiance Distribution Field (NeRDF) that targets efficient view synthesis in real-time.
We use a small network similar to NeRF while preserving the rendering speed with a single network forwarding per pixel as in NeLF.
Experiments show that our proposed method offers a better trade-off among speed, quality, and network size than existing methods.
arXiv Detail & Related papers (2023-08-22T02:23:28Z) - Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields [64.13207562222094]
We show how a technique that combines mip-NeRF 360 and grid-based models can yield error rates that are 8% - 77% lower than either prior technique, and that trains 24x faster than mip-NeRF 360.
arXiv Detail & Related papers (2023-04-13T17:55:12Z) - Mega-NeRF: Scalable Construction of Large-Scale NeRFs for Virtual
Fly-Throughs [54.41204057689033]
We explore how to leverage neural fields (NeRFs) to build interactive 3D environments from large-scale visual captures spanning buildings or even multiple city blocks collected primarily from drone data.
In contrast to the single object scenes against which NeRFs have been traditionally evaluated, this setting poses multiple challenges.
We introduce a simple clustering algorithm that partitions training images (or rather pixels) into different NeRF submodules that can be trained in parallel.
arXiv Detail & Related papers (2021-12-20T17:40:48Z) - Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance
Fields [45.84983186882732]
"mip-NeRF" (a la "mipmap"), extends NeRF to represent the scene at a continuously-valued scale.
By efficiently rendering anti-aliased conical frustums instead of rays, mip-NeRF reduces objectionable aliasing artifacts.
Compared to NeRF, mip-NeRF reduces average error rates by 16% on the dataset presented with NeRF and by 60% on a challenging multiscale variant of that dataset.
arXiv Detail & Related papers (2021-03-24T18:02:11Z) - FastNeRF: High-Fidelity Neural Rendering at 200FPS [17.722927021159393]
We propose FastNeRF, a system capable of rendering high fidelity images at 200Hz on a high-end consumer GPU.
The proposed method is 3000 times faster than the original NeRF algorithm and at least an order of magnitude faster than existing work on accelerating NeRF.
arXiv Detail & Related papers (2021-03-18T17:09:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.