Burning RED: Unlocking Subtask-Driven Reinforcement Learning and Risk-Awareness in Average-Reward Markov Decision Processes
- URL: http://arxiv.org/abs/2410.10578v3
- Date: Wed, 30 Oct 2024 23:23:42 GMT
- Title: Burning RED: Unlocking Subtask-Driven Reinforcement Learning and Risk-Awareness in Average-Reward Markov Decision Processes
- Authors: Juan Sebastian Rojas, Chi-Guhn Lee,
- Abstract summary: Average-reward Markov decision processes (MDPs) provide a foundational framework for sequential decision-making under uncertainty.
We study a unique structural property of average-reward MDPs and utilize it to introduce Reward-Extended Differential (or RED) reinforcement learning.
- Score: 7.028778922533688
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Average-reward Markov decision processes (MDPs) provide a foundational framework for sequential decision-making under uncertainty. However, average-reward MDPs have remained largely unexplored in reinforcement learning (RL) settings, with the majority of RL-based efforts having been allocated to episodic and discounted MDPs. In this work, we study a unique structural property of average-reward MDPs and utilize it to introduce Reward-Extended Differential (or RED) reinforcement learning: a novel RL framework that can be used to effectively and efficiently solve various subtasks simultaneously in the average-reward setting. We introduce a family of RED learning algorithms for prediction and control, including proven-convergent algorithms for the tabular case. We then showcase the power of these algorithms by demonstrating how they can be used to learn a policy that optimizes, for the first time, the well-known conditional value-at-risk (CVaR) risk measure in a fully-online manner, without the use of an explicit bi-level optimization scheme or an augmented state-space.
Related papers
- Risk-Sensitive RL with Optimized Certainty Equivalents via Reduction to
Standard RL [48.1726560631463]
We study Risk-Sensitive Reinforcement Learning with the Optimized Certainty Equivalent (OCE) risk.
We propose two general meta-algorithms via reductions to standard RL.
We show that it learns the optimal risk-sensitive policy while prior algorithms provably fail.
arXiv Detail & Related papers (2024-03-10T21:45:12Z) - Provable Risk-Sensitive Distributional Reinforcement Learning with
General Function Approximation [54.61816424792866]
We introduce a general framework on Risk-Sensitive Distributional Reinforcement Learning (RS-DisRL), with static Lipschitz Risk Measures (LRM) and general function approximation.
We design two innovative meta-algorithms: textttRS-DisRL-M, a model-based strategy for model-based function approximation, and textttRS-DisRL-V, a model-free approach for general value function approximation.
arXiv Detail & Related papers (2024-02-28T08:43:18Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
The sequential decision-making problem is statistically learnable if it admits a low-rank structure modeled by predictive state representations (PSRs)
This paper proposes the first known UCB-type approach for PSRs, featuring a novel bonus term that upper bounds the total variation distance between the estimated and true models.
In contrast to existing approaches for PSRs, our UCB-type algorithms enjoy computational tractability, last-iterate guaranteed near-optimal policy, and guaranteed model accuracy.
arXiv Detail & Related papers (2023-07-01T18:35:21Z) - Non-stationary Reinforcement Learning under General Function
Approximation [60.430936031067006]
We first propose a new complexity metric called dynamic Bellman Eluder (DBE) dimension for non-stationary MDPs.
Based on the proposed complexity metric, we propose a novel confidence-set based model-free algorithm called SW-OPEA.
We show that SW-OPEA is provably efficient as long as the variation budget is not significantly large.
arXiv Detail & Related papers (2023-06-01T16:19:37Z) - On Practical Robust Reinforcement Learning: Practical Uncertainty Set
and Double-Agent Algorithm [11.748284119769039]
Robust reinforcement learning (RRL) aims at seeking a robust policy to optimize the worst case performance over an uncertainty set of Markov decision processes (MDPs)
arXiv Detail & Related papers (2023-05-11T08:52:09Z) - Model-based Safe Deep Reinforcement Learning via a Constrained Proximal
Policy Optimization Algorithm [4.128216503196621]
We propose an On-policy Model-based Safe Deep RL algorithm in which we learn the transition dynamics of the environment in an online manner.
We show that our algorithm is more sample efficient and results in lower cumulative hazard violations as compared to constrained model-free approaches.
arXiv Detail & Related papers (2022-10-14T06:53:02Z) - Making Linear MDPs Practical via Contrastive Representation Learning [101.75885788118131]
It is common to address the curse of dimensionality in Markov decision processes (MDPs) by exploiting low-rank representations.
We consider an alternative definition of linear MDPs that automatically ensures normalization while allowing efficient representation learning.
We demonstrate superior performance over existing state-of-the-art model-based and model-free algorithms on several benchmarks.
arXiv Detail & Related papers (2022-07-14T18:18:02Z) - Robustness and risk management via distributional dynamic programming [13.173307471333619]
We introduce a new class of distributional operators, together with a practical DP algorithm for policy evaluation.
Our approach reformulates through an augmented state space where each state is split into a worst-case substate and a best-case substate.
We derive distributional operators and DP algorithms solving a new control task.
arXiv Detail & Related papers (2021-12-28T12:12:57Z) - Minimum-Delay Adaptation in Non-Stationary Reinforcement Learning via
Online High-Confidence Change-Point Detection [7.685002911021767]
We introduce an algorithm that efficiently learns policies in non-stationary environments.
It analyzes a possibly infinite stream of data and computes, in real-time, high-confidence change-point detection statistics.
We show that (i) this algorithm minimizes the delay until unforeseen changes to a context are detected, thereby allowing for rapid responses.
arXiv Detail & Related papers (2021-05-20T01:57:52Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
We introduce a new regularizer for empirical value functions and show that it lower bounds the Wasserstein distributionally robust value function.
It suggests using regularization as a practical tool for dealing with $textitexternal uncertainty$ in reinforcement learning.
arXiv Detail & Related papers (2020-03-05T19:56:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.