論文の概要: Towards Aligned Canonical Correlation Analysis: Preliminary Formulation
and Proof-of-Concept Results
- arxiv url: http://arxiv.org/abs/2312.00296v2
- Date: Fri, 8 Dec 2023 01:04:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-11 17:53:27.102091
- Title: Towards Aligned Canonical Correlation Analysis: Preliminary Formulation
and Proof-of-Concept Results
- Title(参考訳): 直交正準相関解析に向けて:予備定式化と概念実証
- Authors: Biqian Cheng, Evangelos E. Papalexakis, Jia Chen
- Abstract要約: 正準相関解析(CCA)は、データの複数のビューを最大相関した潜在空間に埋め込むために広く応用されている。
従来の手法で要求される様々なデータ視点の整合性は、多くの実践例において不明確である。
本稿では、アライメントとマルチビュー埋め込みを反復的に解決し、この問題に対処する新しいフレームワークであるACCAを提案する。
- 参考スコア(独自算出の注目度): 6.933535396099733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Canonical Correlation Analysis (CCA) has been widely applied to jointly embed
multiple views of data in a maximally correlated latent space. However, the
alignment between various data perspectives, which is required by traditional
approaches, is unclear in many practical cases. In this work we propose a new
framework Aligned Canonical Correlation Analysis (ACCA), to address this
challenge by iteratively solving the alignment and multi-view embedding.
- Abstract(参考訳): 正準相関解析(CCA)は、データの複数のビューを最大相関した潜在空間に埋め込むために広く応用されている。
しかしながら、従来のアプローチで要求される様々なデータ視点の整合は、多くの実用的なケースにおいて不明確である。
本研究では、アライメントとマルチビューの埋め込みを反復的に解決し、この問題に対処する新しいフレームワークであるACCA(Aligned Canonical correlation Analysis)を提案する。
関連論文リスト
- Top-K Pairwise Ranking: Bridging the Gap Among Ranking-Based Measures for Multi-Label Classification [120.37051160567277]
本稿では,Top-K Pairwise Ranking(TKPR)という新しい尺度を提案する。
一連の分析により、TKPRは既存のランキングベースの尺度と互換性があることが示されている。
一方,データ依存縮約法という新しい手法に基づいて,提案手法の急激な一般化を確立する。
論文 参考訳(メタデータ) (2024-07-09T09:36:37Z) - Functional Generalized Canonical Correlation Analysis for studying
multiple longitudinal variables [0.9208007322096533]
FGCCA(Functional Generalized Canonical correlation Analysis)は、共同で観測される複数のランダムプロセス間の関連を探索する新しいフレームワークである。
我々は,解法の単調性を確立し,標準成分を推定するためのベイズ的アプローチを導入する。
本稿では,縦断データセットにユースケースを提示し,シミュレーション研究における手法の効率性を評価する。
論文 参考訳(メタデータ) (2023-10-11T09:21:31Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
線形複雑度に近い高速マルチビュークラスタリングのための適応重み付き積分空間(AIMC)を提案する。
特に、ビュー生成モデルは、潜在積分空間からのビュー観測を再構成するために設計されている。
いくつかの実世界のデータセットで実施された実験は、提案したAIMC法の優位性を確認した。
論文 参考訳(メタデータ) (2022-08-25T05:47:39Z) - Variational Interpretable Learning from Multi-view Data [2.687817337319978]
DICCAは、多視点データの共有とビュー固有のバリエーションの両方を分離するように設計されている。
実世界のデータセットにおける実証的な結果は、我々の手法がドメイン間で競合していることを示している。
論文 参考訳(メタデータ) (2022-02-28T01:56:44Z) - Bayesian Sparse Factor Analysis with Kernelized Observations [67.60224656603823]
多視点問題は潜在変数モデルに直面することができる。
高次元問題と非線形問題は伝統的にカーネルメソッドによって扱われる。
両アプローチを単一モデルにマージすることを提案する。
論文 参考訳(メタデータ) (2020-06-01T14:25:38Z) - Multi-view Alignment and Generation in CCA via Consistent Latent
Encoding [34.57297855115903]
マルチビューアライメントは多くの実世界のマルチビューアプリケーションにおいて重要である。
本稿ではベイズの視点から多視点アライメントを考察する。
本稿では,一貫した潜伏符号化を実現する Adversarial CCA (ACCA) を提案する。
論文 参考訳(メタデータ) (2020-05-24T10:50:15Z) - Agglomerative Neural Networks for Multi-view Clustering [109.55325971050154]
本稿では,最適コンセンサスを近似する凝集分析法を提案する。
本稿では,制約付きラプラシアンランクに基づくANN(Agglomerative Neural Network)を用いて,マルチビューデータをクラスタリングする。
4つの一般的なデータセットに対する最先端のマルチビュークラスタリング手法に対する我々の評価は、ANNの有望なビュー・コンセンサス分析能力を示している。
論文 参考訳(メタデータ) (2020-05-12T05:39:10Z) - Sparse Generalized Canonical Correlation Analysis: Distributed
Alternating Iteration based Approach [18.93565942407577]
Sparse Canonical correlation analysis (CCA) はスパース構造を用いた潜伏情報検出に有用な統計ツールである。
本稿では,多視点データとスパース構造との潜在関係を検出可能な一般標準相関解析(GCCA)を提案する。
論文 参考訳(メタデータ) (2020-04-23T05:53:48Z) - Invariant Causal Prediction for Block MDPs [106.63346115341862]
環境全体にわたる一般化は、実世界の課題への強化学習アルゴリズムの適用の成功に不可欠である。
本稿では,多環境環境における新しい観測を一般化するモデル不適合状態抽象化(MISA)を学習するための不変予測法を提案する。
論文 参考訳(メタデータ) (2020-03-12T21:03:01Z) - Variational Inference for Deep Probabilistic Canonical Correlation
Analysis [49.36636239154184]
線形多視点層と深層生成ネットワークを観測モデルとして構成した深部確率的多視点モデルを提案する。
潜在確率多視点層の後方分布を近似した効率的な変分推論法を開発した。
任意の数のビューを持つモデルへの一般化も提案されている。
論文 参考訳(メタデータ) (2020-03-09T17:51:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。