論文の概要: RIS-Based On-the-Air Semantic Communications -- a Diffractional Deep
Neural Network Approach
- arxiv url: http://arxiv.org/abs/2312.00535v1
- Date: Fri, 1 Dec 2023 12:15:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-04 14:42:19.513428
- Title: RIS-Based On-the-Air Semantic Communications -- a Diffractional Deep
Neural Network Approach
- Title(参考訳): RIS-based on-the-Air Semantic Communications -- 回折型ディープニューラルネットワークアプローチ
- Authors: Shuyi Chen, Yingzhe Hui, Yifan Qin, Yueyi Yuan, Weixiao Meng, Xuewen
Luo, Hsiao-Hwa Chen
- Abstract要約: 現在のAIベースのセマンティックコミュニケーション手法は実装にデジタルハードウェアを必要とする。
RISベースのセマンティックコミュニケーションは、光速計算、計算能力の低さ、複数のタスクを同時に処理する能力など、魅力的な機能を提供する。
- 参考スコア(独自算出の注目度): 10.626169088908867
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Semantic communication has gained significant attention recently due to its
advantages in achieving higher transmission efficiency by focusing on semantic
information instead of bit-level information. However, current AI-based
semantic communication methods require digital hardware for implementation.
With the rapid advancement on reconfigurable intelligence surfaces (RISs), a
new approach called on-the-air diffractional deep neural networks (D$^2$NN) can
be utilized to enable semantic communications on the wave domain. This paper
proposes a new paradigm of RIS-based on-the-air semantic communications, where
the computational process occurs inherently as wireless signals pass through
RISs. We present the system model and discuss the data and control flows of
this scheme, followed by a performance analysis using image transmission as an
example. In comparison to traditional hardware-based approaches, RIS-based
semantic communications offer appealing features, such as light-speed
computation, low computational power requirements, and the ability to handle
multiple tasks simultaneously.
- Abstract(参考訳): 近年のセマンティック通信は,ビットレベル情報ではなくセマンティック情報に注目することで,高い伝送効率を実現するという利点から注目されている。
しかし、現在のAIベースのセマンティックコミュニケーション手法は実装にデジタルハードウェアを必要とする。
reconfigurable intelligence surface (riss) の急速な進歩により、オン・ザ・エア回折深層ニューラルネットワーク (d$^2$nn) と呼ばれる新しいアプローチがウェーブドメインにおけるセマンティック通信を可能にする。
本稿では,無線信号がRISを通過すると,その計算過程が本質的に発生する,RISベースのオンザエアセマンティックコミュニケーションの新しいパラダイムを提案する。
本稿では,システムモデルを示し,このスキームのデータと制御フローを考察し,画像伝送を用いた性能解析を例に示す。
従来のハードウェアベースのアプローチと比較して、RISベースのセマンティックコミュニケーションは、光速計算、計算能力の低さ、複数のタスクを同時に処理する能力など、魅力的な機能を提供する。
関連論文リスト
- Dynamic Relative Representations for Goal-Oriented Semantic Communications [13.994922919058922]
通信のセマンティクスと有効性は6G無線ネットワークにおいて基本的な役割を果たす。
潜時空間通信において、この課題は、ディープニューラルネットワークがデータをエンコードする高次元表現における誤調整として現れる。
本稿では,相対表現を利用して意味ミスマッチを緩和する,ゴール指向のセマンティックコミュニケーションのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-25T17:48:06Z) - Emergency Computing: An Adaptive Collaborative Inference Method Based on
Hierarchical Reinforcement Learning [14.929735103723573]
センシング,通信,計算,キャッシュ,インテリジェンスを備えた緊急ネットワーク(E-SC3I)を提案する。
このフレームワークには、緊急コンピューティング、キャッシュ、統合通信とセンシング、インテリジェンス強化のためのメカニズムが含まれている。
本稿では,特に緊急コンピューティングに焦点をあて,階層的強化学習に基づく適応型協調推論手法(ACIM)を提案する。
論文 参考訳(メタデータ) (2024-02-03T13:28:35Z) - Adaptive Resource Allocation for Semantic Communication Networks [34.189531352110386]
本稿では,意味的量子化効率(SQE)や伝送遅延などのセマンティック通信ネットワークにおけるサービス品質について検討する。
全体として有効なSC-QoSを最大化する問題は、基地局、ビット意味表現、サブチャネル割り当て、およびセマンティックリソース割り当てを共同で送信することで定式化される。
本設計では, セマンティックノイズに効果的に対処でき, 無線通信において, 複数のベンチマーク方式と比較して優れた性能が得られる。
論文 参考訳(メタデータ) (2023-12-02T09:12:12Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
デジタルツイン(DT)は、物理世界の仮想表現と通信(例えば6G)、コンピュータ、人工知能(AI)技術を活用して、多くの接続されたインテリジェンスサービスを実現する。
無線システムは、厳密な通信制約下での情報意思決定を容易にするために意味コミュニケーション(SC)のパラダイムを利用することができる。
DTベースの無線システムでは,因果意味通信(CSC)と呼ばれる新しいフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-25T00:15:00Z) - Neuro-Symbolic Causal Reasoning Meets Signaling Game for Emergent
Semantic Communications [71.63189900803623]
創発的SCシステムフレームワークを提案し,創発的言語設計のためのシグナリングゲームと因果推論のためのニューロシンボリック(NeSy)人工知能(AI)アプローチで構成されている。
ESCシステムは、意味情報、信頼性、歪み、類似性の新たな指標を強化するように設計されている。
論文 参考訳(メタデータ) (2022-10-21T15:33:37Z) - Age of Semantics in Cooperative Communications: To Expedite Simulation
Towards Real via Offline Reinforcement Learning [53.18060442931179]
協調リレー通信システムにおける状態更新のセマンティックス更新度を測定するための意味学年代(AoS)を提案する。
オンライン・ディープ・アクター・クリティック(DAC)学習手法を,政治時間差学習の枠組みに基づいて提案する。
そこで我々は,以前に収集したデータセットから最適制御ポリシーを推定する,新しいオフラインDAC方式を提案する。
論文 参考訳(メタデータ) (2022-09-19T11:55:28Z) - Neuro-Symbolic Artificial Intelligence (AI) for Intent based Semantic
Communication [85.06664206117088]
6Gネットワークはデータ転送のセマンティクスと有効性(エンドユーザ)を考慮する必要がある。
観測データの背後にある因果構造を学習するための柱としてNeSy AIが提案されている。
GFlowNetは、無線システムにおいて初めて活用され、データを生成する確率構造を学ぶ。
論文 参考訳(メタデータ) (2022-05-22T07:11:57Z) - Phase Configuration Learning in Wireless Networks with Multiple
Reconfigurable Intelligent Surfaces [50.622375361505824]
RIS(Reconfigurable Intelligent Surfaces)は、電磁波伝搬の動的制御を提供する、高度にスケーラブルな技術である。
RISを内蔵した無線通信における大きな課題の1つは、複数のRISの低オーバーヘッドダイナミックな構成である。
RISの位相構成に対する低複雑さ教師あり学習手法を考案する。
論文 参考訳(メタデータ) (2020-10-09T05:35:27Z) - Communication-Efficient and Distributed Learning Over Wireless Networks:
Principles and Applications [55.65768284748698]
機械学習(ML)は、第5世代(5G)通信システムなどのための有望なイネーブルである。
本稿では、関連するコミュニケーションとMLの原則を概観し、選択したユースケースでコミュニケーション効率と分散学習フレームワークを提示することを目的とする。
論文 参考訳(メタデータ) (2020-08-06T12:37:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。