Instruction-tuning Aligns LLMs to the Human Brain
- URL: http://arxiv.org/abs/2312.00575v2
- Date: Fri, 9 Aug 2024 04:33:58 GMT
- Title: Instruction-tuning Aligns LLMs to the Human Brain
- Authors: Khai Loong Aw, Syrielle Montariol, Badr AlKhamissi, Martin Schrimpf, Antoine Bosselut,
- Abstract summary: We investigate the effect of instruction-tuning on aligning large language models and human language processing mechanisms.
We find that instruction-tuning generally enhances brain alignment, but has no similar effect on behavioral alignment.
Our results suggest that the mechanisms that encode world knowledge in LLMs also improve representational alignment to the human brain.
- Score: 19.450164922129723
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instruction-tuning is a widely adopted finetuning method that enables large language models (LLMs) to generate output that more closely resembles human responses. However, no studies have shown that instruction-tuning actually teaches LLMs to process language in a similar manner as humans. We investigate the effect of instruction-tuning on aligning LLM and human language processing mechanisms in two ways: (1) brain alignment, the similarity of LLM internal representations to neural activity in the human language system, and (2) behavioral alignment, the similarity of LLM and human behavior on a reading task. We assess 25 vanilla and instruction-tuned LLMs on three datasets involving humans reading naturalistic stories and sentences, and find that instruction-tuning generally enhances brain alignment (~6%), but has no similar effect on behavioral alignment. To identify factors underlying this improvement in brain alignment, we compute correlations between brain alignment and various LLM properties, such as model size, problem-solving, and world knowledge understanding. Notably, we find a strong positive correlation between brain alignment and model size (r = 0.95), as well as performance on tasks requiring world knowledge (r = 0.81). Our results demonstrate that instruction-tuning LLMs improves both world knowledge representations and brain alignment, suggesting that the mechanisms that encode world knowledge in LLMs also improve representational alignment to the human brain.
Related papers
- Refine Knowledge of Large Language Models via Adaptive Contrastive Learning [54.61213933999464]
A mainstream category of methods is to reduce hallucinations by optimizing the knowledge representation of Large Language Models.
We believe that the process of models refining knowledge can greatly benefit from the way humans learn.
In our work, by imitating the human learning process, we design an Adaptive Contrastive Learning strategy.
arXiv Detail & Related papers (2025-02-11T02:19:13Z) - Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - Psychomatics -- A Multidisciplinary Framework for Understanding Artificial Minds [0.319565400223685]
This paper introduces Psychomatics, a framework bridging cognitive science, linguistics, and computer science.
It aims to better understand the high-level functioning of LLMs.
Psychomatics holds the potential to yield transformative insights into the nature of language, cognition, and intelligence.
arXiv Detail & Related papers (2024-07-23T12:53:41Z) - Lost in Translation: The Algorithmic Gap Between LMs and the Brain [8.799971499357499]
Language Models (LMs) have achieved impressive performance on various linguistic tasks, but their relationship to human language processing in the brain remains unclear.
This paper examines the gaps and overlaps between LMs and the brain at different levels of analysis.
We discuss how insights from neuroscience, such as sparsity, modularity, internal states, and interactive learning, can inform the development of more biologically plausible language models.
arXiv Detail & Related papers (2024-07-05T17:43:16Z) - Do Large Language Models Mirror Cognitive Language Processing? [43.68923267228057]
Large Language Models (LLMs) have demonstrated remarkable abilities in text comprehension and logical reasoning.
Brain cognitive processing signals are typically utilized to study human language processing.
arXiv Detail & Related papers (2024-02-28T03:38:20Z) - Do Language Models Exhibit the Same Cognitive Biases in Problem Solving as Human Learners? [140.9751389452011]
We study the biases of large language models (LLMs) in relation to those known in children when solving arithmetic word problems.
We generate a novel set of word problems for each of these tests, using a neuro-symbolic approach that enables fine-grained control over the problem features.
arXiv Detail & Related papers (2024-01-31T18:48:20Z) - Contextual Feature Extraction Hierarchies Converge in Large Language
Models and the Brain [12.92793034617015]
We show that as large language models (LLMs) achieve higher performance on benchmark tasks, they become more brain-like.
We also show the importance of contextual information in improving model performance and brain similarity.
arXiv Detail & Related papers (2024-01-31T08:48:35Z) - Divergences between Language Models and Human Brains [59.100552839650774]
We systematically explore the divergences between human and machine language processing.
We identify two domains that LMs do not capture well: social/emotional intelligence and physical commonsense.
Our results show that fine-tuning LMs on these domains can improve their alignment with human brain responses.
arXiv Detail & Related papers (2023-11-15T19:02:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.