Lost in Translation: The Algorithmic Gap Between LMs and the Brain
- URL: http://arxiv.org/abs/2407.04680v1
- Date: Fri, 5 Jul 2024 17:43:16 GMT
- Title: Lost in Translation: The Algorithmic Gap Between LMs and the Brain
- Authors: Tommaso Tosato, Pascal Jr Tikeng Notsawo, Saskia Helbling, Irina Rish, Guillaume Dumas,
- Abstract summary: Language Models (LMs) have achieved impressive performance on various linguistic tasks, but their relationship to human language processing in the brain remains unclear.
This paper examines the gaps and overlaps between LMs and the brain at different levels of analysis.
We discuss how insights from neuroscience, such as sparsity, modularity, internal states, and interactive learning, can inform the development of more biologically plausible language models.
- Score: 8.799971499357499
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Language Models (LMs) have achieved impressive performance on various linguistic tasks, but their relationship to human language processing in the brain remains unclear. This paper examines the gaps and overlaps between LMs and the brain at different levels of analysis, emphasizing the importance of looking beyond input-output behavior to examine and compare the internal processes of these systems. We discuss how insights from neuroscience, such as sparsity, modularity, internal states, and interactive learning, can inform the development of more biologically plausible language models. Furthermore, we explore the role of scaling laws in bridging the gap between LMs and human cognition, highlighting the need for efficiency constraints analogous to those in biological systems. By developing LMs that more closely mimic brain function, we aim to advance both artificial intelligence and our understanding of human cognition.
Related papers
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Psychomatics -- A Multidisciplinary Framework for Understanding Artificial Minds [0.319565400223685]
This paper introduces Psychomatics, a framework bridging cognitive science, linguistics, and computer science.
It aims to better understand the high-level functioning of LLMs.
Psychomatics holds the potential to yield transformative insights into the nature of language, cognition, and intelligence.
arXiv Detail & Related papers (2024-07-23T12:53:41Z) - Large Language Model-based FMRI Encoding of Language Functions for Subjects with Neurocognitive Disorder [53.575426835313536]
This paper explores language-related functional changes in older NCD adults using LLM-based fMRI encoding and brain scores.
We analyze the correlation between brain scores and cognitive scores at both whole-brain and language-related ROI levels.
Our findings reveal that higher cognitive abilities correspond to better brain scores, with correlations peaking in the middle temporal gyrus.
arXiv Detail & Related papers (2024-07-15T01:09:08Z) - The neural correlates of logical-mathematical symbol systems processing resemble that of spatial cognition more than natural language processing [6.613108038833871]
The ability to manipulate logical-mathematical symbols (LMS) is a cognitive skill arguably unique to humans.
Previous studies have pinpointed two primary candidates, natural language processing and spatial cognition.
The present study compared the neural correlates at the domain level with both automated meta-analysis and synthesized maps.
arXiv Detail & Related papers (2024-06-20T14:31:09Z) - Exploring Spatial Schema Intuitions in Large Language and Vision Models [8.944921398608063]
We investigate whether large language models (LLMs) effectively capture implicit human intuitions about building blocks of language.
Surprisingly, correlations between model outputs and human responses emerge, revealing adaptability without a tangible connection to embodied experiences.
This research contributes to a nuanced understanding of the interplay between language, spatial experiences, and computations made by large language models.
arXiv Detail & Related papers (2024-02-01T19:25:50Z) - Contextual Feature Extraction Hierarchies Converge in Large Language
Models and the Brain [12.92793034617015]
We show that as large language models (LLMs) achieve higher performance on benchmark tasks, they become more brain-like.
We also show the importance of contextual information in improving model performance and brain similarity.
arXiv Detail & Related papers (2024-01-31T08:48:35Z) - Divergences between Language Models and Human Brains [63.405788999891335]
Recent research has hinted that brain signals can be effectively predicted using internal representations of language models (LMs)
We show that there are clear differences in how LMs and humans represent and use language.
We identify two domains that are not captured well by LMs: social/emotional intelligence and physical commonsense.
arXiv Detail & Related papers (2023-11-15T19:02:40Z) - Unveiling A Core Linguistic Region in Large Language Models [49.860260050718516]
This paper conducts an analogical research using brain localization as a prototype.
We have discovered a core region in large language models that corresponds to linguistic competence.
We observe that an improvement in linguistic competence does not necessarily accompany an elevation in the model's knowledge level.
arXiv Detail & Related papers (2023-10-23T13:31:32Z) - Language Cognition and Language Computation -- Human and Machine
Language Understanding [51.56546543716759]
Language understanding is a key scientific issue in the fields of cognitive and computer science.
Can a combination of the disciplines offer new insights for building intelligent language models?
arXiv Detail & Related papers (2023-01-12T02:37:00Z) - Model-based analysis of brain activity reveals the hierarchy of language
in 305 subjects [82.81964713263483]
A popular approach to decompose the neural bases of language consists in correlating, across individuals, the brain responses to different stimuli.
Here, we show that a model-based approach can reach equivalent results within subjects exposed to natural stimuli.
arXiv Detail & Related papers (2021-10-12T15:30:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.