論文の概要: Deep Unlearning: Fast and Efficient Training-free Approach to Class Forgetting
- arxiv url: http://arxiv.org/abs/2312.00761v3
- Date: Tue, 7 May 2024 15:26:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 19:54:07.736241
- Title: Deep Unlearning: Fast and Efficient Training-free Approach to Class Forgetting
- Title(参考訳): ディープアンラーニング: クラスフォーミングに対する高速で効率的なトレーニング不要なアプローチ
- Authors: Sangamesh Kodge, Gobinda Saha, Kaushik Roy,
- Abstract要約: 学習モデルから特定のクラスを戦略的に除去する新しいクラスアンラーニングアルゴリズムを提案する。
我々は、元のモデルと比較して精度を保ったままのsim 1.5%$の値しか持たないVision Transformerを用いて、ImageNet上でアルゴリズムの有効性を実証する。
- 参考スコア(独自算出の注目度): 9.91998873101083
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine unlearning is a prominent and challenging field, driven by regulatory demands for user data deletion and heightened privacy awareness. Existing approaches involve retraining model or multiple finetuning steps for each deletion request, often constrained by computational limits and restricted data access. In this work, we introduce a novel class unlearning algorithm designed to strategically eliminate specific classes from the learned model. Our algorithm first estimates the Retain and the Forget Spaces using Singular Value Decomposition on the layerwise activations for a small subset of samples from the retain and unlearn classes, respectively. We then compute the shared information between these spaces and remove it from the forget space to isolate class-discriminatory feature space. Finally, we obtain the unlearned model by updating the weights to suppress the class discriminatory features from the activation spaces. We demonstrate our algorithm's efficacy on ImageNet using a Vision Transformer with only $\sim 1.5\%$ drop in retain accuracy compared to the original model while maintaining under $1\%$ accuracy on the unlearned class samples. Further, our algorithm consistently performs well when subject to Membership Inference Attacks showing $7.8\%$ improvement on average across a variety of image classification datasets and network architectures, as compared to other baselines while being $\sim 6 \times$ more computationally efficient. Our code is available at https://github.com/sangamesh-kodge/class_forgetting.
- Abstract(参考訳): 機械学習は、ユーザのデータ削除とプライバシー意識の高まりに対する規制の要求により、目立って困難な分野である。
既存のアプローチでは、各削除要求に対して、しばしば計算制限と制限されたデータアクセスによって制約されるモデルまたは複数の微調整ステップを再訓練する。
本研究では,学習モデルから特定のクラスを戦略的に除去する新しいクラスアンラーニングアルゴリズムを提案する。
提案アルゴリズムは,まず,保持クラスと未学習クラスからのサンプルの小さなサブセットに対して,階層的アクティベーションに対してSingular Value Decomposition(Singular Value Decomposition)を用いてRetainとForget Spacesを推定する。
次に、これらの空間間の共有情報を計算し、それを忘れ空間から取り除き、クラス識別的特徴空間を分離する。
最後に、活性化空間からのクラス識別特性を抑えるために重みを更新することにより、未学習モデルを得る。
このアルゴリズムの有効性を、未学習のクラスサンプルに対して1\%以下の精度を維持しながら、元のモデルと比較して精度を保ったまま、わずか$\sim 1.5\%の値のVision Transformerを用いて、ImageNet上で実証する。
さらに、このアルゴリズムは、様々な画像分類データセットやネットワークアーキテクチャに対して平均7.8 %$の改善を示すメンバーシップ推論攻撃を対象とし、他のベースラインと比較すると、より計算効率の高い$\sim 6 \times$である。
私たちのコードはhttps://github.com/sangamesh-kodge/class_forgetting.comで利用可能です。
関連論文リスト
- LoRA Unlearns More and Retains More (Student Abstract) [0.0]
PruneLoRAは、モデルに低ランクの更新を適用することで、大規模なパラメータ更新の必要性を減らす。
そこで我々はLoRAを利用してプルーンドモデルのパラメータのサブセットを選択的に修正し、計算コスト、メモリ要件を低減し、残りのクラスの性能を維持するモデルの能力を向上させる。
論文 参考訳(メタデータ) (2024-11-16T16:47:57Z) - $\nabla τ$: Gradient-based and Task-Agnostic machine Unlearning [7.04736023670375]
グラディエントベースおよびタスク非依存マシンUnlearning(nabla tau$)を紹介する。
$nabla tau$は、残りのデータに対して標準の勾配勾配を使いながら、忘れられるデータに適応的な勾配勾配を適用します。
我々は、確立されたメンバーシップ推論攻撃指標を用いて、フレームワークの有効性を評価する。
論文 参考訳(メタデータ) (2024-03-21T12:11:26Z) - Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
半教師付き学習(SSL)は大規模3Dシーン理解のための活発な研究課題である。
既存のSSLベースのメソッドは、クラス不均衡とポイントクラウドデータのロングテール分布による厳しいトレーニングバイアスに悩まされている。
本稿では,特徴表現学習と分類器を別の最適化方法で切り離してバイアス決定境界を効果的にシフトする,新しいデカップリング最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-13T04:16:40Z) - Boundary Unlearning [5.132489421775161]
我々は、訓練された機械学習モデルからクラス全体を解放する、迅速かつ効果的な方法である境界アンラーニングを提案する。
画像分類タスクと顔認識タスクにおいて境界アンラーニングを広範囲に評価し,それぞれ17タイムと19タイムの速さで評価した。
論文 参考訳(メタデータ) (2023-03-21T03:33:18Z) - One-Pixel Shortcut: on the Learning Preference of Deep Neural Networks [28.502489028888608]
Unlearnable Example (ULE) は、DNNのトレーニングのための不正使用からデータを保護することを目的としている。
逆行訓練では、誤り最小化ノイズの非学習性は著しく低下する。
本稿では,各画像の1ピクセルのみを摂動させ,データセットを学習不能にする,新しいモデルフリー手法であるemphOne-Pixel Shortcutを提案する。
論文 参考訳(メタデータ) (2022-05-24T15:17:52Z) - Spacing Loss for Discovering Novel Categories [72.52222295216062]
新たなクラスディスカバリ(NCD)は、マシンラーニングモデルがラベルのないデータからインスタンスを意味的にグループ化する、学習パラダイムである。
まず,ラベル付きデータとラベルなしデータを併用する必要があるかどうかに基づいて,既存のNCD手法を1段階および2段階の手法に特徴付ける。
多次元スケーリングのキューを用いて、潜在空間における分離性を強制する単純で強力な損失関数を考案する。
論文 参考訳(メタデータ) (2022-04-22T09:37:11Z) - Incremental Learning of Structured Memory via Closed-Loop Transcription [20.255633973040183]
本研究は、インクリメンタルな設定で複数のオブジェクトクラスの構造化記憶を学習するための最小限の計算モデルを提案する。
本手法は,従来のインクリメンタルラーニング手法よりもシンプルで,モデルサイズ,ストレージ,計算の面でより効率的である。
実験結果から,本手法は破滅的忘れを効果的に軽減し,生成的リプレイよりも高い性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2022-02-11T02:20:43Z) - Online Selective Classification with Limited Feedback [82.68009460301585]
オンライン学習モデルにおいて、予測者がインスタンスの分類を控える可能性のある選択的分類について検討する。
私たちが考慮している設定の健全な2つの側面は、データが不可避である可能性があるため、データは不可避である可能性があるということです。
smash$tildeO(T1-mu)$ over abstention against Adaptive adversaries. smash$tildeO(T1-mu)$ incurring smash$tildeO(T1-mu)$ over abstention。
論文 参考訳(メタデータ) (2021-10-27T08:00:53Z) - Effective Model Sparsification by Scheduled Grow-and-Prune Methods [73.03533268740605]
本稿では,高密度モデルの事前学習を伴わない新規なGrow-and-prune(GaP)手法を提案する。
実験により、そのようなモデルは様々なタスクにおいて80%の間隔で高度に最適化された高密度モデルの品質に適合または打ち勝つことができることが示された。
論文 参考訳(メタデータ) (2021-06-18T01:03:13Z) - Improving Calibration for Long-Tailed Recognition [68.32848696795519]
このようなシナリオにおけるキャリブレーションとパフォーマンスを改善する2つの方法を提案します。
異なるサンプルによるデータセットバイアスに対して,シフトバッチ正規化を提案する。
提案手法は,複数の長尾認識ベンチマークデータセットに新しいレコードをセットする。
論文 参考訳(メタデータ) (2021-04-01T13:55:21Z) - SCAN: Learning to Classify Images without Labels [73.69513783788622]
機能学習とクラスタリングを分離する2段階のアプローチを提唱する。
表現学習からの自己教師型タスクを用いて意味論的意味のある特徴を得る。
我々は、ImageNet上で有望な結果を得、低データ体制下では、いくつかの半教師付き学習方法より優れています。
論文 参考訳(メタデータ) (2020-05-25T18:12:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。