Segment Any 3D Gaussians
- URL: http://arxiv.org/abs/2312.00860v3
- Date: Wed, 05 Feb 2025 11:25:47 GMT
- Title: Segment Any 3D Gaussians
- Authors: Jiazhong Cen, Jiemin Fang, Chen Yang, Lingxi Xie, Xiaopeng Zhang, Wei Shen, Qi Tian,
- Abstract summary: This paper presents SAGA, a highly efficient 3D promptable segmentation method based on 3D Gaussian Splatting (3D-GS)
Given 2D visual prompts as input, SAGA can segment the corresponding 3D target represented by 3D Gaussians within 4 ms.
We show that SAGA achieves real-time multi-granularity segmentation with quality comparable to state-of-the-art methods.
- Score: 85.93694310363325
- License:
- Abstract: This paper presents SAGA (Segment Any 3D GAussians), a highly efficient 3D promptable segmentation method based on 3D Gaussian Splatting (3D-GS). Given 2D visual prompts as input, SAGA can segment the corresponding 3D target represented by 3D Gaussians within 4 ms. This is achieved by attaching an scale-gated affinity feature to each 3D Gaussian to endow it a new property towards multi-granularity segmentation. Specifically, a scale-aware contrastive training strategy is proposed for the scale-gated affinity feature learning. It 1) distills the segmentation capability of the Segment Anything Model (SAM) from 2D masks into the affinity features and 2) employs a soft scale gate mechanism to deal with multi-granularity ambiguity in 3D segmentation through adjusting the magnitude of each feature channel according to a specified 3D physical scale. Evaluations demonstrate that SAGA achieves real-time multi-granularity segmentation with quality comparable to state-of-the-art methods. As one of the first methods addressing promptable segmentation in 3D-GS, the simplicity and effectiveness of SAGA pave the way for future advancements in this field. Our code will be released.
Related papers
- Lifting by Gaussians: A Simple, Fast and Flexible Method for 3D Instance Segmentation [1.4307447044389736]
We introduce a novel approach for open-world instance segmentation of 3D Gaussian Splatted Radiance Fields (3DGS)
Our technique achieves superior semantic segmentation for 2D semantic novel view synthesis and 3D asset extraction results.
arXiv Detail & Related papers (2025-01-31T21:30:59Z) - DCSEG: Decoupled 3D Open-Set Segmentation using Gaussian Splatting [0.0]
Open-set 3D segmentation represents a major point of interest for downstream robotics and augmented/virtual reality applications.
We present a decoupled 3D segmentation pipeline to ensure modularity and adaptability to novel 3D representations and semantic segmentation foundation models.
arXiv Detail & Related papers (2024-12-14T21:26:44Z) - Bootstraping Clustering of Gaussians for View-consistent 3D Scene Understanding [59.51535163599723]
FreeGS is an unsupervised semantic-embedded 3DGS framework that achieves view-consistent 3D scene understanding without the need for 2D labels.
We show that FreeGS performs comparably to state-of-the-art methods while avoiding the complex data preprocessing workload.
arXiv Detail & Related papers (2024-11-29T08:52:32Z) - Gradient-Driven 3D Segmentation and Affordance Transfer in Gaussian Splatting Using 2D Masks [6.647959476396794]
3D Gaussian Splatting has emerged as a powerful 3D scene representation technique, capturing fine details with high efficiency.
In this paper, we introduce a novel voting-based method that extends 2D segmentation models to 3D Gaussian splats.
The robust yet straightforward mathematical formulation underlying this approach makes it a highly effective tool for numerous downstream applications.
arXiv Detail & Related papers (2024-09-18T03:45:44Z) - OpenGaussian: Towards Point-Level 3D Gaussian-based Open Vocabulary Understanding [54.981605111365056]
This paper introduces OpenGaussian, a method based on 3D Gaussian Splatting (3DGS) capable of 3D point-level open vocabulary understanding.
Our primary motivation stems from observing that existing 3DGS-based open vocabulary methods mainly focus on 2D pixel-level parsing.
arXiv Detail & Related papers (2024-06-04T07:42:33Z) - SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition [66.56357905500512]
3D Gaussian Splatting has emerged as an alternative 3D representation for novel view synthesis.
We propose SAGD, a conceptually simple yet effective boundary-enhanced segmentation pipeline for 3D-GS.
Our approach achieves high-quality 3D segmentation without rough boundary issues, which can be easily applied to other scene editing tasks.
arXiv Detail & Related papers (2024-01-31T14:19:03Z) - 2D-Guided 3D Gaussian Segmentation [15.139488857163064]
This paper introduces a 3D Gaussian segmentation method implemented with 2D segmentation as supervision.
This approach uses input 2D segmentation maps to guide the learning of the added 3D Gaussian semantic information.
Experiments show that our method can achieve comparable performances on mIOU and mAcc for multi-object segmentation.
arXiv Detail & Related papers (2023-12-26T13:28:21Z) - SAM-guided Graph Cut for 3D Instance Segmentation [60.75119991853605]
This paper addresses the challenge of 3D instance segmentation by simultaneously leveraging 3D geometric and multi-view image information.
We introduce a novel 3D-to-2D query framework to effectively exploit 2D segmentation models for 3D instance segmentation.
Our method achieves robust segmentation performance and can generalize across different types of scenes.
arXiv Detail & Related papers (2023-12-13T18:59:58Z) - Gaussian Grouping: Segment and Edit Anything in 3D Scenes [65.49196142146292]
We propose Gaussian Grouping, which extends Gaussian Splatting to jointly reconstruct and segment anything in open-world 3D scenes.
Compared to the implicit NeRF representation, we show that the grouped 3D Gaussians can reconstruct, segment and edit anything in 3D with high visual quality, fine granularity and efficiency.
arXiv Detail & Related papers (2023-12-01T17:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.