SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition
- URL: http://arxiv.org/abs/2401.17857v3
- Date: Fri, 17 May 2024 19:02:20 GMT
- Title: SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition
- Authors: Xu Hu, Yuxi Wang, Lue Fan, Junsong Fan, Junran Peng, Zhen Lei, Qing Li, Zhaoxiang Zhang,
- Abstract summary: 3D Gaussian Splatting has emerged as an alternative 3D representation for novel view synthesis.
We propose SAGD, a conceptually simple yet effective boundary-enhanced segmentation pipeline for 3D-GS.
Our approach achieves high-quality 3D segmentation without rough boundary issues, which can be easily applied to other scene editing tasks.
- Score: 66.80822249039235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Gaussian Splatting has emerged as an alternative 3D representation for novel view synthesis, benefiting from its high-quality rendering results and real-time rendering speed. However, the 3D Gaussians learned by 3D-GS have ambiguous structures without any geometry constraints. This inherent issue in 3D-GS leads to a rough boundary when segmenting individual objects. To remedy these problems, we propose SAGD, a conceptually simple yet effective boundary-enhanced segmentation pipeline for 3D-GS to improve segmentation accuracy while preserving segmentation speed. Specifically, we introduce a Gaussian Decomposition scheme, which ingeniously utilizes the special structure of 3D Gaussian, finds out, and then decomposes the boundary Gaussians. Moreover, to achieve fast interactive 3D segmentation, we introduce a novel training-free pipeline by lifting a 2D foundation model to 3D-GS. Extensive experiments demonstrate that our approach achieves high-quality 3D segmentation without rough boundary issues, which can be easily applied to other scene editing tasks.
Related papers
- 3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes [87.01284850604495]
We introduce 3D Convexting (3DCS), which leverages 3D smooth convexes as primitives for modeling geometrically-meaningful radiance fields from multiview images.
3DCS achieves superior performance over 3DGS on benchmarks such as MipNeizer, Tanks and Temples, and Deep Blending.
Our results highlight the potential of 3D Convexting to become the new standard for high-quality scene reconstruction.
arXiv Detail & Related papers (2024-11-22T14:31:39Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled spatial sensitivity pruning score that outperforms current approaches.
We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model.
Our pipeline increases the average rendering speed of 3D-GS by 2.65$times$ while retaining more salient foreground information.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - 3D-HGS: 3D Half-Gaussian Splatting [5.766096863155448]
Photo-realistic 3D Reconstruction is a fundamental problem in 3D computer vision.
We propose to employ 3D Half-Gaussian (3D-HGS) kernels, which can be used as a plug-and-play kernel.
arXiv Detail & Related papers (2024-06-04T19:04:29Z) - Hyper-3DG: Text-to-3D Gaussian Generation via Hypergraph [20.488040789522604]
We propose a method named 3D Gaussian Generation via Hypergraph (Hyper-3DG)'', designed to capture the sophisticated high-order correlations present within 3D objects.
Our framework allows for the production of finely generated 3D objects within a cohesive optimization, effectively circumventing degradation.
arXiv Detail & Related papers (2024-03-14T09:59:55Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting [55.71424195454963]
Spec-Gaussian is an approach that utilizes an anisotropic spherical Gaussian appearance field instead of spherical harmonics.
Our experimental results demonstrate that our method surpasses existing approaches in terms of rendering quality.
This improvement extends the applicability of 3D GS to handle intricate scenarios with specular and anisotropic surfaces.
arXiv Detail & Related papers (2024-02-24T17:22:15Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z) - 2D-Guided 3D Gaussian Segmentation [15.139488857163064]
This paper introduces a 3D Gaussian segmentation method implemented with 2D segmentation as supervision.
This approach uses input 2D segmentation maps to guide the learning of the added 3D Gaussian semantic information.
Experiments show that our method can achieve comparable performances on mIOU and mAcc for multi-object segmentation.
arXiv Detail & Related papers (2023-12-26T13:28:21Z) - Segment Any 3D Gaussians [85.93694310363325]
This paper presents SAGA, a highly efficient 3D promptable segmentation method based on 3D Gaussian Splatting (3D-GS)
Given 2D visual prompts as input, SAGA can segment the corresponding 3D target represented by 3D Gaussians within 4 ms.
We show that SAGA achieves real-time multi-granularity segmentation with quality comparable to state-of-the-art methods.
arXiv Detail & Related papers (2023-12-01T17:15:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.