Understanding Unimodal Bias in Multimodal Deep Linear Networks
- URL: http://arxiv.org/abs/2312.00935v2
- Date: Sun, 2 Jun 2024 01:51:26 GMT
- Title: Understanding Unimodal Bias in Multimodal Deep Linear Networks
- Authors: Yedi Zhang, Peter E. Latham, Andrew Saxe,
- Abstract summary: A key challenge is unimodal bias, where a network overly relies on one modality and ignores others during joint training.
We develop a theory of unimodal bias with multimodal deep linear networks to understand how architecture and data statistics influence this bias.
- Score: 7.197469507060226
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Using multiple input streams simultaneously to train multimodal neural networks is intuitively advantageous but practically challenging. A key challenge is unimodal bias, where a network overly relies on one modality and ignores others during joint training. We develop a theory of unimodal bias with multimodal deep linear networks to understand how architecture and data statistics influence this bias. This is the first work to calculate the duration of the unimodal phase in learning as a function of the depth at which modalities are fused within the network, dataset statistics, and initialization. We show that the deeper the layer at which fusion occurs, the longer the unimodal phase. A long unimodal phase can lead to a generalization deficit and permanent unimodal bias in the overparametrized regime. Our results, derived for multimodal linear networks, extend to nonlinear networks in certain settings. Taken together, this work illuminates pathologies of multimodal learning under joint training, showing that late and intermediate fusion architectures can give rise to long unimodal phases and permanent unimodal bias. Our code is available at: https://yedizhang.github.io/unimodal-bias.html.
Related papers
- Multimodal Representation Learning by Alternating Unimodal Adaptation [73.15829571740866]
We propose MLA (Multimodal Learning with Alternating Unimodal Adaptation) to overcome challenges where some modalities appear more dominant than others during multimodal learning.
MLA reframes the conventional joint multimodal learning process by transforming it into an alternating unimodal learning process.
It captures cross-modal interactions through a shared head, which undergoes continuous optimization across different modalities.
Experiments are conducted on five diverse datasets, encompassing scenarios with complete modalities and scenarios with missing modalities.
arXiv Detail & Related papers (2023-11-17T18:57:40Z) - Learning Unseen Modality Interaction [54.23533023883659]
Multimodal learning assumes all modality combinations of interest are available during training to learn cross-modal correspondences.
We pose the problem of unseen modality interaction and introduce a first solution.
It exploits a module that projects the multidimensional features of different modalities into a common space with rich information preserved.
arXiv Detail & Related papers (2023-06-22T10:53:10Z) - UAMD-Net: A Unified Adaptive Multimodal Neural Network for Dense Depth
Completion [0.618778092044887]
We propose a novel multimodal neural network, namely UAMD-Net, for dense depth completion based on fusion of binocular stereo matching and the weak constrain from the sparse point clouds.
Our method produces robust results and outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2022-04-16T12:49:50Z) - Modality Competition: What Makes Joint Training of Multi-modal Network
Fail in Deep Learning? (Provably) [75.38159612828362]
It has been observed that the best uni-modal network outperforms the jointly trained multi-modal network.
This work provides a theoretical explanation for the emergence of such performance gap in neural networks for the prevalent joint training framework.
arXiv Detail & Related papers (2022-03-23T06:21:53Z) - Channel Exchanging Networks for Multimodal and Multitask Dense Image
Prediction [125.18248926508045]
We propose Channel-Exchanging-Network (CEN) which is self-adaptive, parameter-free, and more importantly, applicable for both multimodal fusion and multitask learning.
CEN dynamically exchanges channels betweenworks of different modalities.
For the application of dense image prediction, the validity of CEN is tested by four different scenarios.
arXiv Detail & Related papers (2021-12-04T05:47:54Z) - Routing with Self-Attention for Multimodal Capsule Networks [108.85007719132618]
We present a new multimodal capsule network that allows us to leverage the strength of capsules in the context of a multimodal learning framework.
To adapt the capsules to large-scale input data, we propose a novel routing by self-attention mechanism that selects relevant capsules.
This allows not only for robust training with noisy video data, but also to scale up the size of the capsule network compared to traditional routing methods.
arXiv Detail & Related papers (2021-12-01T19:01:26Z) - What Makes Multimodal Learning Better than Single (Provably) [28.793128982222438]
We show that learning with multiple modalities achieves a smaller population risk thanonly using its subset of modalities.
This is the first theoretical treatment to capture important qualitative phenomenaobserved in real multimodal applications.
arXiv Detail & Related papers (2021-06-08T17:20:02Z) - Analyzing Unaligned Multimodal Sequence via Graph Convolution and Graph
Pooling Fusion [28.077474663199062]
We propose a novel model, termed Multimodal Graph, to investigate the effectiveness of graph neural networks (GNN) on modeling multimodal sequential data.
Our graph-based model reaches state-of-the-art performance on two benchmark datasets.
arXiv Detail & Related papers (2020-11-27T06:12:14Z) - The Surprising Simplicity of the Early-Time Learning Dynamics of Neural
Networks [43.860358308049044]
In work, we show that these common perceptions can be completely false in the early phase of learning.
We argue that this surprising simplicity can persist in networks with more layers with convolutional architecture.
arXiv Detail & Related papers (2020-06-25T17:42:49Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
We propose a novel learning scheme for unpaired cross-modality image segmentation.
In our method, we heavily reuse network parameters, by sharing all convolutional kernels across CT and MRI.
We have extensively validated our approach on two multi-class segmentation problems.
arXiv Detail & Related papers (2020-01-06T20:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.