Omni-SMoLA: Boosting Generalist Multimodal Models with Soft Mixture of Low-rank Experts
- URL: http://arxiv.org/abs/2312.00968v2
- Date: Tue, 2 Apr 2024 19:57:32 GMT
- Title: Omni-SMoLA: Boosting Generalist Multimodal Models with Soft Mixture of Low-rank Experts
- Authors: Jialin Wu, Xia Hu, Yaqing Wang, Bo Pang, Radu Soricut,
- Abstract summary: Large multi-modal models (LMMs) exhibit remarkable performance across numerous tasks.
generalist LMMs often suffer from performance degradation when tuned over a large collection of tasks.
We propose Omni-SMoLA, an architecture that uses the Soft MoE approach to mix many multimodal low rank experts.
- Score: 74.40198929049959
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large multi-modal models (LMMs) exhibit remarkable performance across numerous tasks. However, generalist LMMs often suffer from performance degradation when tuned over a large collection of tasks. Recent research suggests that Mixture of Experts (MoE) architectures are useful for instruction tuning, but for LMMs of parameter size around O(50-100B), the prohibitive cost of replicating and storing the expert models severely limits the number of experts we can use. We propose Omni-SMoLA, an architecture that uses the Soft MoE approach to (softly) mix many multimodal low rank experts, and avoids introducing a significant number of new parameters compared to conventional MoE models. The core intuition here is that the large model provides a foundational backbone, while different lightweight experts residually learn specialized knowledge, either per-modality or multimodally. Extensive experiments demonstrate that the SMoLA approach helps improve the generalist performance across a broad range of generative vision-and-language tasks, achieving new SoTA generalist performance that often matches or outperforms single specialized LMM baselines, as well as new SoTA specialist performance.
Related papers
- Upcycling Instruction Tuning from Dense to Mixture-of-Experts via Parameter Merging [36.0133566024214]
Upcycling Instruction Tuning (UpIT) is a data-efficient approach for tuning a dense pre-trained model into a MoE instruction model.
To ensure each specialized expert in the MoE model works as expected, we select a small amount of seed data that each expert excels to pre-optimize the router.
arXiv Detail & Related papers (2024-10-02T14:48:22Z) - MoME: Mixture of Multimodal Experts for Generalist Multimodal Large Language Models [57.091523832149655]
We propose a mixture of multimodal experts (MoME) to mitigate task interference and obtain a generalist MLLM.
Our MoME is composed of two key components, a mixture of vision experts (MoVE) and a mixture of language experts (MoLE)
arXiv Detail & Related papers (2024-07-17T16:31:38Z) - Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts [54.529880848937104]
We develop a unified MLLM with the MoE architecture, named Uni-MoE, that can handle a wide array of modalities.
Specifically, it features modality-specific encoders with connectors for a unified multimodal representation.
We evaluate the instruction-tuned Uni-MoE on a comprehensive set of multimodal datasets.
arXiv Detail & Related papers (2024-05-18T12:16:01Z) - Multi-Head Mixture-of-Experts [100.60556163597946]
We propose Multi-Head Mixture-of-Experts (MH-MoE), which employs a multi-head mechanism to split each token into multiple sub-tokens.
MH-MoE is straightforward to implement and decouples from other SMoE optimization methods, making it easy to integrate with other SMoE models for enhanced performance.
arXiv Detail & Related papers (2024-04-23T13:47:09Z) - Performance Characterization of Expert Router for Scalable LLM Inference [0.4726677580049183]
Large Language Models (LLMs) have experienced widespread adoption across scientific and industrial domains.
deploying and serving these models at scale with optimal throughput and latency remains a significant challenge.
This paper introduces Expert Router, a scalable routing architecture that directs to specialized expert models.
arXiv Detail & Related papers (2024-04-22T16:33:42Z) - Not All Experts are Equal: Efficient Expert Pruning and Skipping for Mixture-of-Experts Large Language Models [90.14693869269519]
MoE LLMs can achieve higher performance with fewer parameters, but it is still hard to deploy them due to their immense parameter sizes.
This paper mainly aims to enhance the deployment efficiency of MoE LLMs by introducing plug-and-play expert-level sparsification techniques.
arXiv Detail & Related papers (2024-02-22T18:56:07Z) - Mixture of Cluster-conditional LoRA Experts for Vision-language Instruction Tuning [68.94230363140771]
Mixture of Cluster-conditional LoRA Experts (MoCLE)
MoCLE is a novel Mixture of Experts architecture designed to activate the task-customized model parameters based on the instruction clusters.
Experiments on InstructBLIP and LLaVA demonstrate the effectiveness of MoCLE.
arXiv Detail & Related papers (2023-12-19T18:11:19Z) - Large Language Model for Multi-objective Evolutionary Optimization [26.44390674048544]
Multiobjective evolutionary algorithms (MOEAs) are major methods for solving multiobjective optimization problems (MOPs)
Recent attempts have been made to replace the manually designed operators in MOEAs with learning-based operators.
This work investigates a novel approach that leverages the powerful large language model (LLM) to design MOEA operators.
arXiv Detail & Related papers (2023-10-19T07:46:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.