EvoMoE: Expert Evolution in Mixture of Experts for Multimodal Large Language Models
- URL: http://arxiv.org/abs/2505.23830v1
- Date: Wed, 28 May 2025 08:38:39 GMT
- Title: EvoMoE: Expert Evolution in Mixture of Experts for Multimodal Large Language Models
- Authors: Linglin Jing, Yuting Gao, Zhigang Wang, Wang Lan, Yiwen Tang, Wenhai Wang, Kaipeng Zhang, Qingpei Guo,
- Abstract summary: Multi-modal large language models (MLLMs) have increasingly adopted MoE techniques.<n>MoE experts are often by simply replicating the FFN parameters from LLMs.<n>Expert uniformity occurs because MoE experts are often by simply replicating the FFN parameters from LLMs.<n> router rigidity stems from the prevalent use of static linear routers for expert selection.
- Score: 25.12002287083368
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements have shown that the Mixture of Experts (MoE) approach significantly enhances the capacity of large language models (LLMs) and improves performance on downstream tasks. Building on these promising results, multi-modal large language models (MLLMs) have increasingly adopted MoE techniques. However, existing multi-modal MoE tuning methods typically face two key challenges: expert uniformity and router rigidity. Expert uniformity occurs because MoE experts are often initialized by simply replicating the FFN parameters from LLMs, leading to homogenized expert functions and weakening the intended diversification of the MoE architecture. Meanwhile, router rigidity stems from the prevalent use of static linear routers for expert selection, which fail to distinguish between visual and textual tokens, resulting in similar expert distributions for image and text. To address these limitations, we propose EvoMoE, an innovative MoE tuning framework. EvoMoE introduces a meticulously designed expert initialization strategy that progressively evolves multiple robust experts from a single trainable expert, a process termed expert evolution that specifically targets severe expert homogenization. Furthermore, we introduce the Dynamic Token-aware Router (DTR), a novel routing mechanism that allocates input tokens to appropriate experts based on their modality and intrinsic token values. This dynamic routing is facilitated by hypernetworks, which dynamically generate routing weights tailored for each individual token. Extensive experiments demonstrate that EvoMoE significantly outperforms other sparse MLLMs across a variety of multi-modal benchmarks, including MME, MMBench, TextVQA, and POPE. Our results highlight the effectiveness of EvoMoE in enhancing the performance of MLLMs by addressing the critical issues of expert uniformity and router rigidity.
Related papers
- OMoE: Diversifying Mixture of Low-Rank Adaptation by Orthogonal Finetuning [3.8813502422318127]
Building mixture-of-experts (MoE) architecture for Low-rank adaptation (LoRA) is emerging as a potential direction in parameter-efficient fine-tuning (PEFT)<n>We first conduct qualitative analysis to indicate that experts collapse to similar representations in vanilla MoE, limiting the capacity of modular design and computational efficiency.<n>Motivated by these findings, we propose Orthogonal Mixture-of-Experts (OMoE)<n>Our method is simple and alleviates memory bottlenecks, as it incurs minimal experts compared to vanilla MoE models.
arXiv Detail & Related papers (2025-01-17T09:27:08Z) - Scalable Multi-Domain Adaptation of Language Models using Modular Experts [10.393155077703653]
MoDE is a mixture-of-experts architecture that augments a general PLM with modular, domain-specialized experts.
MoDE achieves comparable target performances to full parameter fine-tuning while achieving 1.65% better retention performance.
arXiv Detail & Related papers (2024-10-14T06:02:56Z) - DA-MoE: Towards Dynamic Expert Allocation for Mixture-of-Experts Models [1.4255659581428335]
We propose a novel Dynamically Allocates a variable number of experts for Mixture-of-Experts (DA-MoE) models based on an effective token importance measure.
Our approach consistently outperforms the state-of-the-art Transformer based MoE model on the popular GLUE benchmark.
arXiv Detail & Related papers (2024-09-10T17:36:15Z) - Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts [54.529880848937104]
We develop a unified MLLM with the MoE architecture, named Uni-MoE, that can handle a wide array of modalities.
Specifically, it features modality-specific encoders with connectors for a unified multimodal representation.
We evaluate the instruction-tuned Uni-MoE on a comprehensive set of multimodal datasets.
arXiv Detail & Related papers (2024-05-18T12:16:01Z) - Multi-Head Mixture-of-Experts [100.60556163597946]
We propose Multi-Head Mixture-of-Experts (MH-MoE), which employs a multi-head mechanism to split each token into multiple sub-tokens.
MH-MoE is straightforward to implement and decouples from other SMoE optimization methods, making it easy to integrate with other SMoE models for enhanced performance.
arXiv Detail & Related papers (2024-04-23T13:47:09Z) - Harder Tasks Need More Experts: Dynamic Routing in MoE Models [58.18526590138739]
We introduce a novel dynamic expert selection framework for Mixture of Experts (MoE) models.
Our method dynamically selects experts based on the confidence level in expert selection for each input.
arXiv Detail & Related papers (2024-03-12T13:41:15Z) - Omni-SMoLA: Boosting Generalist Multimodal Models with Soft Mixture of Low-rank Experts [74.40198929049959]
Large multi-modal models (LMMs) exhibit remarkable performance across numerous tasks.
generalist LMMs often suffer from performance degradation when tuned over a large collection of tasks.
We propose Omni-SMoLA, an architecture that uses the Soft MoE approach to mix many multimodal low rank experts.
arXiv Detail & Related papers (2023-12-01T23:04:27Z) - Diversifying the Mixture-of-Experts Representation for Language Models with Orthogonal Optimizer [59.43462055143123]
The Mixture of Experts (MoE) has emerged as a highly successful technique in deep learning.
In this study, we shed light on the homogeneous representation problem, wherein experts in the MoE fail to specialize and lack diversity.
We propose an alternating training strategy that encourages each expert to update in a direction to the subspace spanned by other experts.
arXiv Detail & Related papers (2023-10-15T07:20:28Z) - MoEC: Mixture of Expert Clusters [93.63738535295866]
Sparsely Mixture of Experts (MoE) has received great interest due to its promising scaling capability with affordable computational overhead.
MoE converts dense layers into sparse experts, and utilizes a gated routing network to make experts conditionally activated.
However, as the number of experts grows, MoE with outrageous parameters suffers from overfitting and sparse data allocation.
arXiv Detail & Related papers (2022-07-19T06:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.