論文の概要: A Novel Residual-guided Learning Method for Image Steganography
- arxiv url: http://arxiv.org/abs/2312.01080v1
- Date: Sat, 2 Dec 2023 09:10:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 13:25:19.044653
- Title: A Novel Residual-guided Learning Method for Image Steganography
- Title(参考訳): 画像ステレオグラフィのための残差誘導学習法
- Authors: Miaoxin Ye, Dongxia Huang, Kangkang Wei, Weiqi Luo,
- Abstract要約: 本稿では,画像残差,残差,画像局所分散をシームレスに統合する,革新的な深層学習手法を提案する。
我々のフレームワークは、埋め込み確率生成器と3つの重要なガイドコンポーネントを含む: 複雑なテクスチャ領域への埋め込みを容易にするための残留ガイダンス。
- 参考スコア(独自算出の注目度): 5.779160987173197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional steganographic techniques have often relied on manually crafted attributes related to image residuals. These methods demand a significant level of expertise and face challenges in integrating diverse image residual characteristics. In this paper, we introduce an innovative deep learning-based methodology that seamlessly integrates image residuals, residual distances, and image local variance to autonomously learn embedding probabilities. Our framework includes an embedding probability generator and three pivotal guiding components: Residual guidance strives to facilitate embedding in complex-textured areas. Residual distance guidance aims to minimize the residual differences between cover and stego images. Local variance guidance effectively safeguards against modifications in regions characterized by uncomplicated or uniform textures. The three components collectively guide the learning process, enhancing the security performance. Comprehensive experimental findings underscore the superiority of our approach when compared to traditional steganographic methods and randomly initialized ReLOAD in the spatial domain.
- Abstract(参考訳): 伝統的な造形技術は、しばしば画像の残像に関連する手作業による属性に依存してきた。
これらの手法は、様々な画像残像の特徴を統合する上で、かなりのレベルの専門知識を必要とし、課題に直面している。
本稿では,画像残差,残差,画像局所差をシームレスに統合し,埋め込み確率を自律的に学習する,革新的な深層学習手法を提案する。
我々のフレームワークは、埋め込み確率生成器と3つの重要なガイドコンポーネントを含む: 複雑なテクスチャ領域への埋め込みを容易にするための残留ガイダンス。
残留距離誘導は、カバーとステゴ画像の残差を最小化することを目的としている。
局所分散誘導は、複雑でない、あるいは均一なテクスチャを特徴とする領域の修正に対して効果的に保護する。
3つのコンポーネントは総合的に学習プロセスをガイドし、セキュリティ性能を高めます。
従来のステガノグラフィー法と空間領域におけるランダム初期化ReLOADとの比較から,我々のアプローチの優位性を示す総合的な実験結果が得られた。
関連論文リスト
- Denoising as Adaptation: Noise-Space Domain Adaptation for Image Restoration [64.84134880709625]
拡散モデルを用いて,雑音空間を介して領域適応を行うことが可能であることを示す。
特に、補助的な条件入力が多段階の復調過程にどのように影響するかというユニークな性質を活用することにより、有意義な拡散損失を導出する。
拡散モデルにおけるチャネルシャッフル層や残留スワッピング型コントラスト学習などの重要な戦略を提案する。
論文 参考訳(メタデータ) (2024-06-26T17:40:30Z) - ENTED: Enhanced Neural Texture Extraction and Distribution for
Reference-based Blind Face Restoration [51.205673783866146]
我々は,高品質でリアルな肖像画を復元することを目的とした,ブラインドフェイス修復のための新しいフレームワークであるENTEDを提案する。
劣化した入力画像と参照画像の間で高品質なテクスチャ特徴を伝達するために,テクスチャ抽出と分布の枠組みを利用する。
われわれのフレームワークにおけるStyleGANのようなアーキテクチャは、現実的な画像を生成するために高品質な潜伏符号を必要とする。
論文 参考訳(メタデータ) (2024-01-13T04:54:59Z) - Training-free Zero-shot Composed Image Retrieval with Local Concept Reranking [34.31345844296072]
合成画像検索は、参照画像と対応する修正テキストの合成クエリを通して、ギャラリー画像から興味のある画像を検索しようとする。
現在の構成画像検索手法の多くは、参照画像、修正テキスト、対応するターゲット画像からなるコストのかかる3重化データセットのトレーニングに対する教師付き学習アプローチに従っている。
そこで本研究では,学習不要なゼロショット合成画像検索手法を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:31:01Z) - A2V: A Semi-Supervised Domain Adaptation Framework for Brain Vessel Segmentation via Two-Phase Training Angiography-to-Venography Translation [4.452428104996953]
画像の異なる脳血管セグメンテーションのための半教師付きドメイン適応フレームワークを提案する。
本フレームワークは,注釈付血管造影と限られた数の血管造影に頼り,画像から画像への翻訳とセマンティックセグメンテーションを実現する。
論文 参考訳(メタデータ) (2023-09-12T09:12:37Z) - PAIF: Perception-Aware Infrared-Visible Image Fusion for Attack-Tolerant
Semantic Segmentation [50.556961575275345]
対向シーンにおけるセグメンテーションの堅牢性を促進するための認識認識型融合フレームワークを提案する。
我々は,先進の競争相手に比べて15.3% mIOUの利得で,ロバスト性を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-08-08T01:55:44Z) - Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
入力画像の複数の知覚的特徴を利用する新しいSR手法MPF-Netを提案する。
本稿では,MPFEモジュールを組み込んで,多様な知覚情報を抽出する手法を提案する。
また、モデルの学習能力を向上する対照的な正規化項(CR)も導入する。
論文 参考訳(メタデータ) (2023-05-26T07:35:49Z) - Adapt and Align to Improve Zero-Shot Sketch-Based Image Retrieval [85.39613457282107]
スケッチに基づく画像検索のクロスドメイン性は困難である。
重要な課題に対処する効果的なAdaptとAlignのアプローチを提案する。
ゼロショットシナリオにおける画像テキスト基盤モデル(例えばCLIP)の最近の進歩に触発されて、学習したイメージの埋め込みを、より意味的なテキスト埋め込みと明確に整合させ、見知らぬクラスから見つからないクラスへの所望の知識伝達を実現する。
論文 参考訳(メタデータ) (2023-05-09T03:10:15Z) - Towards Robust Image-in-Audio Deep Steganography [14.1081872409308]
本稿では,その堅牢性向上に焦点をあて,既存の音響深部ステガノグラフィー手法を拡張し,拡張する。
提案した機能拡張には、損失関数の修正、短い時間フーリエ変換(STFT)の利用、誤り訂正のための符号化プロセスにおける冗長性の導入、ピクセルサブ畳み込み操作における追加情報のバッファリングが含まれる。
論文 参考訳(メタデータ) (2023-03-09T03:16:04Z) - PatchMVSNet: Patch-wise Unsupervised Multi-View Stereo for
Weakly-Textured Surface Reconstruction [2.9896482273918434]
本稿では,多視点画像の制約を活かしたロバストな損失関数を提案し,あいまいさを緩和する。
我々の戦略は任意の深さ推定フレームワークで実装することができ、任意の大規模MVSデータセットでトレーニングすることができる。
提案手法は,DTU,タンク・アンド・テンプル,ETH3Dなどの一般的なベンチマーク上での最先端手法の性能に達する。
論文 参考訳(メタデータ) (2022-03-04T07:05:23Z) - Adversarial Domain Feature Adaptation for Bronchoscopic Depth Estimation [111.89519571205778]
そこで本研究では,深度推定のためのドメイン適応手法を提案する。
提案する2段階構造は,まず,ラベル付き合成画像を用いた深度推定ネットワークを教師付きで訓練する。
実験の結果,提案手法は実画像上でのネットワーク性能をかなりの差で向上させることがわかった。
論文 参考訳(メタデータ) (2021-09-24T08:11:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。