論文の概要: Evetac: An Event-based Optical Tactile Sensor for Robotic Manipulation
- arxiv url: http://arxiv.org/abs/2312.01236v2
- Date: Thu, 15 Aug 2024 15:53:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 19:14:56.647513
- Title: Evetac: An Event-based Optical Tactile Sensor for Robotic Manipulation
- Title(参考訳): Evetac:ロボットマニピュレーションのためのイベントベース光学触覚センサ
- Authors: Niklas Funk, Erik Helmut, Georgia Chalvatzaki, Roberto Calandra, Jan Peters,
- Abstract要約: Evetacはイベントベースの光学触覚センサーである。
タッチ処理アルゴリズムを開発し,その測定結果を1000Hzでオンラインで処理する。
Evetacの出力とマーカー追跡は、データ駆動スリップの検出と予測モデルを学ぶ上で有意義な機能を提供する。
- 参考スコア(独自算出の注目度): 20.713880984921385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optical tactile sensors have recently become popular. They provide high spatial resolution, but struggle to offer fine temporal resolutions. To overcome this shortcoming, we study the idea of replacing the RGB camera with an event-based camera and introduce a new event-based optical tactile sensor called Evetac. Along with hardware design, we develop touch processing algorithms to process its measurements online at 1000 Hz. We devise an efficient algorithm to track the elastomer's deformation through the imprinted markers despite the sensor's sparse output. Benchmarking experiments demonstrate Evetac's capabilities of sensing vibrations up to 498 Hz, reconstructing shear forces, and significantly reducing data rates compared to RGB optical tactile sensors. Moreover, Evetac's output and the marker tracking provide meaningful features for learning data-driven slip detection and prediction models. The learned models form the basis for a robust and adaptive closed-loop grasp controller capable of handling a wide range of objects. We believe that fast and efficient event-based tactile sensors like Evetac will be essential for bringing human-like manipulation capabilities to robotics. The sensor design is open-sourced at https://sites.google.com/view/evetac .
- Abstract(参考訳): 近年,光触覚センサが普及している。
これらは高い空間分解能を提供するが、微細な時間分解能を提供するのに苦労する。
この欠点を克服するために、RGBカメラをイベントベースのカメラに置き換えるアイデアと、イベントベースの新しい触覚センサーであるEvetacを紹介する。
ハードウェア設計とともに,1000Hzでオンラインに計測処理を行うタッチ処理アルゴリズムを開発した。
我々は,センサのスパース出力に拘わらず,印字されたマーカーを通してエラストマーの変形を追跡する効率的なアルゴリズムを考案した。
ベンチマーク実験では、エベタックは最大498Hzの振動を感知し、せん断力を再構築し、RGB光触覚センサーと比較してデータレートを著しく低減する能力を示した。
さらに、Evetacの出力とマーカー追跡は、データ駆動スリップの検出と予測モデルを学ぶ上で有意義な機能を提供する。
学習モデルは、広範囲のオブジェクトを扱うことができる頑健で適応的なクローズドループグリップコントローラの基礎を形成する。
Evetacのような高速で効率的なイベントベースの触覚センサーは、ロボット工学に人間のような操作能力をもたらすのに不可欠だと考えています。
センサーの設計はhttps://sites.google.com/view/evetac でオープンソース化されている。
関連論文リスト
- FeelAnyForce: Estimating Contact Force Feedback from Tactile Sensation for Vision-Based Tactile Sensors [18.88211706267447]
視覚に基づく触覚センサを用いて3次元接触力を推定する問題に対処する。
我々のゴールは、様々な視覚ベースの触覚センサーにまたがって、あらゆる物体の接触力(最大15N)を推定することである。
論文 参考訳(メタデータ) (2024-10-02T21:28:19Z) - Multi-Modal Neural Radiance Field for Monocular Dense SLAM with a
Light-Weight ToF Sensor [58.305341034419136]
単眼カメラと軽量ToFセンサを備えた初の高密度SLAMシステムを提案する。
本稿では,RGBカメラと軽量ToFセンサの両方の信号のレンダリングをサポートするマルチモーダル暗黙のシーン表現を提案する。
実験により,本システムは軽量なToFセンサの信号をうまく利用し,競合的な結果が得られることが示された。
論文 参考訳(メタデータ) (2023-08-28T07:56:13Z) - PixelRNN: In-pixel Recurrent Neural Networks for End-to-end-optimized
Perception with Neural Sensors [42.18718773182277]
従来の画像センサは高速フレームレートで高解像度画像をデジタル化し、さらなる処理のためにセンサーから送信する必要がある大量のデータを生成する。
我々は、純粋なバイナリ演算を用いて、センサ上の時間的特徴を符号化する効率的なリカレントニューラルネットワークアーキテクチャ、PixelRNNの処理を開発する。
PixelRNNは、従来のシステムと比較して、センサから送信されるデータ量を64倍に削減し、手ジェスチャー認識や唇読解タスクの競合精度を提供する。
論文 参考訳(メタデータ) (2023-04-11T18:16:47Z) - Object Motion Sensitivity: A Bio-inspired Solution to the Ego-motion
Problem for Event-based Cameras [0.0]
我々は、CMOSイメージセンサ(IRIS)における第2世代のニューロモルフィック画像センサ、統合網膜機能について強調する。
IRISは、光受容体から網膜の出力への完全な網膜計算を模倣し、特徴抽出を目的とする。
この結果から,OMSは従来のRGBやDVSと同様の効率で標準的なコンピュータビジョンタスクを実現できるが,帯域幅の大幅な削減が期待できることがわかった。
論文 参考訳(メタデータ) (2023-03-24T16:22:06Z) - Tactile-Filter: Interactive Tactile Perception for Part Mating [54.46221808805662]
人間は触覚と触覚に頼っている。
視覚ベースの触覚センサーは、様々なロボット認識や制御タスクに広く利用されている。
本稿では,視覚に基づく触覚センサを用いた対話的知覚手法を提案する。
論文 参考訳(メタデータ) (2023-03-10T16:27:37Z) - Bayesian Imitation Learning for End-to-End Mobile Manipulation [80.47771322489422]
RGB + 深度カメラのような追加のセンサー入力によるポリシーの強化は、ロボットの知覚能力を改善するための簡単なアプローチである。
畳み込みニューラルネットワークを正規化するために変分情報ボトルネックを用いることで、保持領域への一般化が向上することを示す。
提案手法は, シミュレーションと現実のギャップを埋めることと, RGBと奥行き変調をうまく融合できることを実証する。
論文 参考訳(メタデータ) (2022-02-15T17:38:30Z) - Learning Camera Miscalibration Detection [83.38916296044394]
本稿では,視覚センサ,特にRGBカメラの誤校正検出を学習するためのデータ駆動型アプローチに焦点を当てた。
コントリビューションには、RGBカメラの誤校正基準と、この基準に基づく新しい半合成データセット生成パイプラインが含まれる。
深層畳み込みニューラルネットワークをトレーニングすることにより、カメラ固有のパラメータの再校正が必要か否かを判断するパイプラインの有効性を実証する。
論文 参考訳(メタデータ) (2020-05-24T10:32:49Z) - Deep Soft Procrustes for Markerless Volumetric Sensor Alignment [81.13055566952221]
本研究では、より堅牢なマルチセンサ空間アライメントを実現するために、マーカーレスデータ駆動対応推定を改善する。
我々は、幾何学的制約を終末的に典型的なセグメンテーションベースモデルに組み込み、対象のポーズ推定タスクと中間密な分類タスクをブリッジする。
実験により,マーカーベースの手法で同様の結果が得られ,マーカーレス手法よりも優れ,またキャリブレーション構造のポーズ変動にも頑健であることがわかった。
論文 参考訳(メタデータ) (2020-03-23T10:51:32Z) - OmniTact: A Multi-Directional High Resolution Touch Sensor [109.28703530853542]
既存の触覚センサーは、平らで、感度が小さいか、低解像度の信号のみを提供する。
我々は,多方向高解像度触覚センサOmniTactを紹介する。
我々は,ロボット制御の課題に対して,OmniTactの能力を評価する。
論文 参考訳(メタデータ) (2020-03-16T01:31:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。