Quantum dense coding with gravitational cat states
- URL: http://arxiv.org/abs/2312.01396v1
- Date: Sun, 3 Dec 2023 13:48:12 GMT
- Title: Quantum dense coding with gravitational cat states
- Authors: Saeed Haddadi, Mehrdad Ghominejad, Artur Czerwinski
- Abstract summary: A protocol of quantum dense coding with gravitational cat states is proposed.
We explore the effects of temperature and system parameters on the dense coding capacity and provide an efficient strategy to preserve the quantum advantage of dense coding for these states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A protocol of quantum dense coding with gravitational cat states is proposed.
We explore the effects of temperature and system parameters on the dense coding
capacity and provide an efficient strategy to preserve the quantum advantage of
dense coding for these states. Our results might open new opportunities for
secure communication and possibly insights into the fundamental nature of
gravity in the context of quantum information processing.
Related papers
- Mixed-Dimensional Qudit State Preparation Using Edge-Weighted Decision Diagrams [3.393749500700096]
Quantum computers have the potential to solve intractable problems.
One key element to exploiting this potential is the capability to efficiently prepare quantum states for multi-valued, or qudit, systems.
In this paper, we investigate quantum state preparation with a focus on mixed-dimensional systems.
arXiv Detail & Related papers (2024-06-05T18:00:01Z) - Quantum Computation Using Large Spin Qudits [0.0]
dissertation explores quantum computation using qudits encoded into large spins.
First, we delve into the generation of high-fidelity universal gate sets for quantum computation with qudits.
Next, we analyze schemes to encode a qubit in the large spin qudits for fault-tolerant quantum computation.
arXiv Detail & Related papers (2024-05-13T16:19:31Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Mimicking states with limited resources: passing quantum quiz via global
control [0.0]
We propose, analyze, and optimize a protocol which allows fast simulation of properties of unknown quantum states.
Our protocol, having common features with quantum identification and shortcuts to adiabaticity, permits avoiding adiabaticity catastrophe.
arXiv Detail & Related papers (2022-08-17T23:18:02Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Simple Quantum State Encodings for Hybrid Programming of Quantum
Simulators [10.953231643211229]
We show the admissibility of using a classical database to encode quantum states for a few practical examples.
We argue in favor of further optimizations for quantum simulation targeting simpler, only'semi-quantum' circuits.
arXiv Detail & Related papers (2022-04-23T10:22:21Z) - Optimisation-free Classification and Density Estimation with Quantum
Circuits [0.0]
We demonstrate the implementation of a novel machine learning framework for probability density estimation and classification using quantum circuits.
The framework maps a training data set or a single data sample to the quantum state of a physical system through quantum feature maps.
We discuss a variational quantum circuit approach that could leverage quantum advantage for our framework.
arXiv Detail & Related papers (2022-03-28T02:40:24Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.