論文の概要: BenchMARL: Benchmarking Multi-Agent Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2312.01472v2
- Date: Fri, 5 Jul 2024 09:31:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 00:32:39.374557
- Title: BenchMARL: Benchmarking Multi-Agent Reinforcement Learning
- Title(参考訳): BenchMARL: マルチエージェント強化学習のベンチマーク
- Authors: Matteo Bettini, Amanda Prorok, Vincent Moens,
- Abstract要約: BenchMARLは、さまざまなアルゴリズム、モデル、環境をまたいで標準化されたベンチマークを可能にする最初のトレーニングライブラリである。
BenchMARLはTorchRLをバックエンドとして使用し、高いパフォーマンスと最先端の実装を維持できる。
- 参考スコア(独自算出の注目度): 8.130948896195878
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of Multi-Agent Reinforcement Learning (MARL) is currently facing a reproducibility crisis. While solutions for standardized reporting have been proposed to address the issue, we still lack a benchmarking tool that enables standardization and reproducibility, while leveraging cutting-edge Reinforcement Learning (RL) implementations. In this paper, we introduce BenchMARL, the first MARL training library created to enable standardized benchmarking across different algorithms, models, and environments. BenchMARL uses TorchRL as its backend, granting it high performance and maintained state-of-the-art implementations while addressing the broad community of MARL PyTorch users. Its design enables systematic configuration and reporting, thus allowing users to create and run complex benchmarks from simple one-line inputs. BenchMARL is open-sourced on GitHub: https://github.com/facebookresearch/BenchMARL
- Abstract(参考訳): マルチエージェント強化学習(MARL)の分野は現在再現性危機に直面している。
標準化されたレポートのソリューションはこの問題に対処するために提案されているが、最先端の強化学習(RL)実装を活用しながら、標準化と再現性を実現するベンチマークツールがまだ存在しない。
本稿では,異なるアルゴリズム,モデル,環境をまたいだ標準化ベンチマークを可能にするため,最初のMARLトレーニングライブラリであるBenchMARLを紹介する。
BenchMARLはTorchRLをバックエンドとして使用しており、MARL PyTorchユーザの幅広いコミュニティに対処しながら、高いパフォーマンスと最先端の実装を維持できる。
その設計により、システマティックな構成とレポートが可能になり、ユーザーは単純なワンライン入力から複雑なベンチマークを作成し、実行することができる。
BenchMARLがGitHubでオープンソース化:https://github.com/facebookresearch/BenchMARL
関連論文リスト
- MIRAGE-Bench: Automatic Multilingual Benchmark Arena for Retrieval-Augmented Generation Systems [43.19298196163617]
MIRAGE-Benchは,Wikipedia上の18の多言語言語を対象とした標準化されたアリーナベース多言語RAGベンチマークである。
このアイデアを用いて、Wikipedia上の18の多様な言語に対して、標準化されたアリーナベースの多言語RAGベンチマークであるMIRAGE-Benchを開発した。
論文 参考訳(メタデータ) (2024-10-17T16:18:49Z) - LiveBench: A Challenging, Contamination-Free LLM Benchmark [101.21578097087699]
最近の情報ソースから頻繁に更新された質問を含む最初のベンチマークであるLiveBenchをリリースする。
我々は、多くの著名なクローズドソースモデルと、0.5Bから110Bまでの数十のオープンソースモデルを評価した。
質問は毎月追加され、更新されるので、時間とともに新しいタスクとより難しいバージョンのタスクをリリースします。
論文 参考訳(メタデータ) (2024-06-27T16:47:42Z) - MixEval: Deriving Wisdom of the Crowd from LLM Benchmark Mixtures [57.886592207948844]
市販のベンチマークを戦略的に混合することにより,効率的な金標準評価を実現するための新しいパラダイムであるMixEvalを提案する。
提案手法は,(1)包括的でよく分散された実世界のユーザクエリと(2)Webから抽出したクエリと,既存のベンチマークからの類似したクエリとをマッチングすることによって,効率よく,かつ,かなり改善された基盤トラスベースのベンチマークを橋渡しする。
論文 参考訳(メタデータ) (2024-06-03T05:47:05Z) - JaxMARL: Multi-Agent RL Environments and Algorithms in JAX [105.343918678781]
我々は、GPU対応の効率と多くの一般的なMARL環境のサポートを組み合わせた、最初のオープンソースPythonベースのライブラリであるJaxMARLを紹介します。
我々の実験は、壁時計時間の観点から、JAXベースのトレーニングパイプラインが既存のアプローチの約14倍高速であることを示している。
また、人気の高いStarCraft Multi-Agent ChallengeのJAXベースの近似的な再実装であるSMAXを紹介し、ベンチマークする。
論文 参考訳(メタデータ) (2023-11-16T18:58:43Z) - AlberDICE: Addressing Out-Of-Distribution Joint Actions in Offline
Multi-Agent RL via Alternating Stationary Distribution Correction Estimation [65.4532392602682]
オフライン強化学習(RL)の主な課題の1つは、データ収集ポリシーから逸脱した学習ポリシーから生じる分散シフトである。
これはしばしば、政策改善中のアウト・オブ・ディストリビューション(OOD)アクションを避けることで対処される。
本稿では,定常分布最適化に基づく個別エージェントの集中学習を行うオフラインMARLアルゴリズムAlberDICEを紹介する。
論文 参考訳(メタデータ) (2023-11-03T18:56:48Z) - RLTF: Reinforcement Learning from Unit Test Feedback [17.35361167578498]
Reinforcement Learning from Unit Test Feedback(リンク)は、新しいオンラインRLフレームワークである。
提案手法は,訓練中にリアルタイムにデータを生成し,高精度なフィードバック信号を用いて高品質なコードを生成する。
論文 参考訳(メタデータ) (2023-07-10T05:18:18Z) - SequeL: A Continual Learning Library in PyTorch and JAX [50.33956216274694]
SequeLは継続学習のためのライブラリで、PyTorchとJAXフレームワークの両方をサポートする。
それは、正規化ベースのアプローチ、リプレイベースのアプローチ、ハイブリッドアプローチを含む、幅広い連続学習アルゴリズムのための統一インターフェースを提供する。
私たちはSequeLをオープンソースライブラリとしてリリースし、研究者や開発者が自身の目的で簡単にライブラリを実験し拡張することができます。
論文 参考訳(メタデータ) (2023-04-21T10:00:22Z) - Off-the-Grid MARL: Datasets with Baselines for Offline Multi-Agent
Reinforcement Learning [4.159549932951023]
オフラインマルチエージェント強化学習(MARL)は、このようなデータセットから効果的な分散型コントローラを構築するための有望なパラダイムを提供する。
MARLはまだ初期段階であり、標準化されたベンチマークデータセットとベースラインがない。
OG-MARLは、協調的なオフラインMARL研究のためのベースラインを持つ高品質データセットのリポジトリである。
論文 参考訳(メタデータ) (2023-02-01T15:41:27Z) - MARLlib: A Scalable and Efficient Multi-agent Reinforcement Learning
Library [82.77446613763809]
本稿では,マルチエージェントタスクとアルゴリズムの組み合わせを高速に開発するためのライブラリであるMARLlibを紹介する。
MARLlibは、マルチエージェントタスクとアルゴリズムの学習過程を効果的に切り離すことができる。
ライブラリのソースコードはGitHubで公開されている。
論文 参考訳(メタデータ) (2022-10-11T03:11:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。