論文の概要: Recurrent Distance Filtering for Graph Representation Learning
- arxiv url: http://arxiv.org/abs/2312.01538v3
- Date: Wed, 5 Jun 2024 14:18:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 03:55:26.100502
- Title: Recurrent Distance Filtering for Graph Representation Learning
- Title(参考訳): グラフ表現学習のためのリカレント距離フィルタリング
- Authors: Yuhui Ding, Antonio Orvieto, Bobby He, Thomas Hofmann,
- Abstract要約: 反復的なワンホップメッセージパッシングに基づくグラフニューラルネットワークは、遠方のノードからの情報を効果的に活用するのに苦労していることが示されている。
これらの課題を解決するための新しいアーキテクチャを提案する。
我々のモデルは、ターゲットへの最短距離で他のノードを集約し、線形RNNを用いてホップ表現のシーケンスを符号化する。
- 参考スコア(独自算出の注目度): 34.761926988427284
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks based on iterative one-hop message passing have been shown to struggle in harnessing the information from distant nodes effectively. Conversely, graph transformers allow each node to attend to all other nodes directly, but lack graph inductive bias and have to rely on ad-hoc positional encoding. In this paper, we propose a new architecture to reconcile these challenges. Our approach stems from the recent breakthroughs in long-range modeling provided by deep state-space models: for a given target node, our model aggregates other nodes by their shortest distances to the target and uses a linear RNN to encode the sequence of hop representations. The linear RNN is parameterized in a particular diagonal form for stable long-range signal propagation and is theoretically expressive enough to encode the neighborhood hierarchy. With no need for positional encoding, we empirically show that the performance of our model is comparable to or better than that of state-of-the-art graph transformers on various benchmarks, with a significantly reduced computational cost. Our code is open-source at https://github.com/skeletondyh/GRED.
- Abstract(参考訳): 反復的なワンホップメッセージパッシングに基づくグラフニューラルネットワークは、遠方のノードからの情報を効果的に活用するのに苦労していることが示されている。
逆にグラフ変換器は、各ノードが他のすべてのノードに直接参加できるようにするが、グラフ帰納バイアスがなく、アドホックな位置符号化に頼る必要がある。
本稿では,これらの課題を解決するための新しいアーキテクチャを提案する。
提案手法は, 与えられた対象ノードに対して, 最短距離で他のノードを集約し, 線形RNNを用いてホップ表現のシーケンスを符号化する。
線形RNNは、安定な長距離信号伝搬のために特定の対角形でパラメータ化され、理論的には近傍階層を符号化するのに十分な表現性を持つ。
位置エンコーディングを必要とせず、我々のモデルの性能は、様々なベンチマークにおける最先端グラフ変換器と同等かそれ以上であり、計算コストが大幅に削減されていることを実証的に示す。
私たちのコードはhttps://github.com/skeletondyh/GRED.comでオープンソースです。
関連論文リスト
- Scalable Graph Compressed Convolutions [68.85227170390864]
ユークリッド畳み込みのための入力グラフのキャリブレーションに置換を適用する微分可能手法を提案する。
グラフキャリブレーションに基づいて,階層型グラフ表現学習のための圧縮畳み込みネットワーク(CoCN)を提案する。
論文 参考訳(メタデータ) (2024-07-26T03:14:13Z) - Spatio-Spectral Graph Neural Networks [50.277959544420455]
比スペクトルグラフネットワーク(S$2$GNN)を提案する。
S$2$GNNは空間的およびスペクトル的にパラメータ化されたグラフフィルタを組み合わせる。
S$2$GNNsは、MPGNNsよりも厳密な近似理論誤差境界を生じる。
論文 参考訳(メタデータ) (2024-05-29T14:28:08Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
本稿では,シーケンシャルノード表現,すなわちSeq-HGNNを用いた新しい異種グラフニューラルネットワークを提案する。
Heterogeneous Graph Benchmark (HGB) と Open Graph Benchmark (OGB) の4つの広く使われているデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-05-18T07:27:18Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
長距離依存のモデリングは、コンピュータビジョンにおけるシーン理解タスクに不可欠である。
完全連結グラフはそのようなモデリングには有益であるが、計算オーバーヘッドは禁じられている。
本稿では,計算複雑性を大幅に低減する動的グラフメッセージパッシングネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T14:41:37Z) - Rewiring with Positional Encodings for Graph Neural Networks [37.394229290996364]
いくつかの最近の研究は、注意機構を備えたグラフニューラルネットワーク層の受容場を拡張するために位置符号化を使用している。
位置エンコーディングを用いて、受容場を$r$ホップ地区に拡張する。
各種モデルやデータセットの改良や,従来のGNNやグラフトランスフォーマーによる競争性能の向上を実現しています。
論文 参考訳(メタデータ) (2022-01-29T22:26:02Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Isometric Graph Neural Networks [5.306334746787569]
我々はIsometric Graph Neural Networks (IGNN) の学習手法を提案する。
IGNNは、任意のGNNアルゴリズムがノード間の距離を反映した表現を生成するために、入力表現空間と損失関数を変更する必要がある。
我々はケンドールのタウ(KT)の400%まで、一貫した実質的な改善を観察する。
論文 参考訳(メタデータ) (2020-06-16T22:51:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。