論文の概要: SCLIP: Rethinking Self-Attention for Dense Vision-Language Inference
- arxiv url: http://arxiv.org/abs/2312.01597v4
- Date: Sat, 26 Oct 2024 15:58:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:14:07.980890
- Title: SCLIP: Rethinking Self-Attention for Dense Vision-Language Inference
- Title(参考訳): SCLIP:Dense Vision-Language推論のための自己意識の再考
- Authors: Feng Wang, Jieru Mei, Alan Yuille,
- Abstract要約: セマンティックセグメンテーションにおけるコントラッシブ言語イメージ事前学習の可能性を高める。
自己注意を再考することで、CLIPは密集した予測タスクに適応できることがわかった。
従来のCLIPビジョンエンコーダの自己保持ブロックをCSAモジュールで置き換える。
- 参考スコア(独自算出の注目度): 11.453253140479166
- License:
- Abstract: Recent advances in contrastive language-image pretraining (CLIP) have demonstrated strong capabilities in zero-shot classification by aligning visual representations with target text embeddings in an image level. However, in dense prediction tasks, CLIP often struggles to localize visual features within an image and fails to give accurate pixel-level predictions, which prevents it from functioning as a generalized visual foundation model. In this work, we aim to enhance CLIP's potential for semantic segmentation with minimal modifications to its pretrained models. By rethinking self-attention, we surprisingly find that CLIP can adapt to dense prediction tasks by simply introducing a novel Correlative Self-Attention (CSA) mechanism. Specifically, we replace the traditional self-attention block of CLIP vision encoder's last layer by our CSA module and reuse its pretrained projection matrices of query, key, and value, leading to a training-free adaptation approach for CLIP's zero-shot semantic segmentation. Extensive experiments show the advantage of CSA: we obtain a 38.2% average zero-shot mIoU across eight semantic segmentation benchmarks highlighted in this paper, significantly outperforming the existing SoTA's 33.9% and the vanilla CLIP's 14.1%.
- Abstract(参考訳): 近年のコントラスト言語画像事前学習(CLIP)は,画像レベルでの視覚表現とテキストの埋め込みを整列させることにより,ゼロショット分類において強力な能力を示している。
しかし、密集した予測タスクでは、CLIPは画像内の視覚的特徴のローカライズに苦慮し、正確なピクセルレベルの予測を与えることができず、一般化された視覚基盤モデルとして機能しない。
本研究では,CLIPのセマンティックセグメンテーションの可能性を高めることを目的として,事前訓練されたモデルに最小限の変更を加える。
自己注意を再考することによって、CLIPは、単に新しい相関自己意識(CSA)メカニズムを導入することで、密集した予測タスクに適応できることがわかった。
具体的には、従来のCLIPビジョンエンコーダの自己アテンションブロックをCSAモジュールで置き換え、事前訓練されたクエリ、キー、値のプロジェクション行列を再利用することで、CLIPのゼロショットセマンティックセマンティックセグメンテーションに対するトレーニング不要な適応アプローチを実現した。
この論文で強調された8つのセマンティックセグメンテーションベンチマークの38.2%の平均ゼロショットmIoUは、既存のSoTAの33.9%とバニラCLIPの14.1%を大きく上回っている。
関連論文リスト
- ClearCLIP: Decomposing CLIP Representations for Dense Vision-Language Inference [32.852004564832455]
我々はCLIPのアーキテクチャを再検討し、残余接続をセグメンテーション品質を劣化させるノイズの主源として同定する。
オープン語彙セマンティックセグメンテーションを強化するためにCLIPの表現を分解する新しいアプローチであるClearCLIPを提案する。
論文 参考訳(メタデータ) (2024-07-17T09:52:20Z) - Explore the Potential of CLIP for Training-Free Open Vocabulary Semantic Segmentation [38.16802763051431]
トレーニング不要なセマンティックセグメンテーション戦略であるCLIPtraseを提案する。
パッチ間の自己相関を補正することで、局所的な特徴認識を高める。
実験の結果、CLIPよりも平均して9つのセグメンテーションベンチマークで22.3%先行していることがわかった。
論文 参考訳(メタデータ) (2024-07-11T08:12:16Z) - CLIP with Quality Captions: A Strong Pretraining for Vision Tasks [16.208506912410147]
良質なキャプションを用いたCLIPプレトレーニングは,近年の教師付き・自己監督型・弱教師付きプレトレーニング方法を上回る可能性がある。
モバイルアーキテクチャはCLIP事前トレーニングのメリットも大きいことが分かっています。
論文 参考訳(メタデータ) (2024-05-14T19:06:24Z) - CLIP meets Model Zoo Experts: Pseudo-Supervision for Visual Enhancement [65.47237619200442]
Contrastive Language Image Pretraining (CLIP)は、視覚言語モデルを訓練するための標準手法である。
モデル動物園からのタスク固有の視覚モデルを用いてCLIPトレーニングを強化し、視覚的表現を改善する。
この単純なセットアップは、異なるビジョンタスク間で最大16.3%の大幅な改善を示している。
論文 参考訳(メタデータ) (2023-10-21T20:20:13Z) - Symmetrical Linguistic Feature Distillation with CLIP for Scene Text
Recognition [77.93678598476149]
CLIP-OCR(Symmetrical Linguistic Feature Distillation framework)を新たに構築する。
CLIP画像エンコーダを逆CLIPテキストエンコーダでカスケードすることにより、画像からテキストまでの特徴フローで対称構造を構築する。
大規模な実験では、CLIP-OCRが6つのSTRベンチマークで平均精度93.8%で有効であることが示されている。
論文 参考訳(メタデータ) (2023-10-08T04:00:20Z) - Towards Realistic Zero-Shot Classification via Self Structural Semantic
Alignment [53.2701026843921]
大規模事前訓練型視覚言語モデル(VLM)はゼロショット分類に有効であることが証明されている。
本稿では,アノテーションではなく,より広い語彙を前提とした,より難易度の高いゼロショット分類(Realistic Zero-Shot Classification)を提案する。
本稿では,ラベルのないデータから構造意味情報を抽出し,同時に自己学習を行う自己構造意味アライメント(S3A)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-24T17:56:46Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
非コントラスト型言語画像事前学習(nCLIP)の有効性について検討する。
我々は、CLIPとnCLIPを組み合わせたマルチタスクフレームワークであるxCLIPを紹介し、nCLIPが機能セマンティクスの強化にCLIPを支援することを示す。
論文 参考訳(メタデータ) (2022-10-17T17:57:46Z) - A Simple Baseline for Zero-shot Semantic Segmentation with Pre-trained
Vision-language Model [61.58071099082296]
オブジェクト検出やセマンティックセグメンテーションといった、より広範な視覚問題に対して、ゼロショット認識をどのようにうまく機能させるかは定かではない。
本稿では,既訓練の視覚言語モデルであるCLIPを用いて,ゼロショットセマンティックセマンティックセマンティックセマンティクスを構築することを目的とした。
実験結果から, この単純なフレームワークは, 従来の最先端をはるかに上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2021-12-29T18:56:18Z) - DenseCLIP: Extract Free Dense Labels from CLIP [130.3830819077699]
対照的に、CLIP(Contrastive Language- Image Pre-Training)は、オープンボキャブラリゼロショット画像認識において画期的な進歩を遂げた。
DenseCLIP+はSOTAトランスダクティブなゼロショットセマンティックセグメンテーション法を大きなマージンで上回る。
我々の発見は、DenseCLIPが高密度予測タスクの信頼性の高い新たな監視源となることを示唆している。
論文 参考訳(メタデータ) (2021-12-02T09:23:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。