論文の概要: Investigating the ability of deep learning to predict Welding Depth and Pore Volume in Hairpin Welding
- arxiv url: http://arxiv.org/abs/2312.01606v3
- Date: Mon, 6 May 2024 14:51:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 00:15:17.470637
- Title: Investigating the ability of deep learning to predict Welding Depth and Pore Volume in Hairpin Welding
- Title(参考訳): ヘアピン溶接における深部学習による溶接深さと孔容積予測能力の検討
- Authors: Amena Darwish, Stefan Ericson, Rohollah Ghasemi, Tobias Andersson, Dan Lönn, Andreas Andersson Lassila, Kent Salomonsson,
- Abstract要約: 本研究では,溶接深度と平均孔容積の2つの重要な溶接部を予測できる頑健な深部学習モデルを提案する。
深層学習ネットワークを小さな数値実験ヘアピン溶接データセットに適用すると,有望な結果が得られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: To advance quality assurance in the welding process, this study presents a robust deep learning model that enables the prediction of two critical welds Key Performance Characteristics (KPCs): welding depth and average pore volume. In the proposed approach, a comprehensive range of laser welding Key Input Characteristics (KICs) is utilized, including welding beam geometries, welding feed rates, path repetitions for weld beam geometries, and bright light weld ratios for all paths, all of which were obtained from hairpin welding experiments. Two deep learning networks are employed with multiple hidden dense layers and linear activation functions to showcase the capabilities of deep neural networks in capturing the intricate nonlinear connections inherent within welding KPCs and KICs. Applying deep learning networks to the small numerical experimental hairpin welding dataset has shown promising results, achieving Mean Absolute Error (MAE) values as low as 0.1079 for predicting welding depth and 0.0641 for average pore volume. Additionally, the validity verification demonstrates the reliability of the proposed method. This, in turn, promises significant advantages in controlling welding outcomes, moving beyond the current trend of relying merely on monitoring for defect classification.
- Abstract(参考訳): 本研究は, 溶接工程における品質保証を向上するため, 溶接深さと平均孔容積の2つの重要な溶接性能特性(KPC)の予測を可能にする頑健な深層学習モデルを提案する。
提案手法では, レーザ溶接キー入力特性 (KIC) の包括的範囲を利用して, 溶接梁ジオメトリー, 溶接供給速度, 溶接梁ジオメトリーの経路繰り返し, およびヘアピン溶接実験から得られた全経路に対する明るい光溶接率について検討した。
2つのディープラーニングネットワークには、複数の隠れた層と線形活性化機能があり、溶接KPCやKICに固有の複雑な非線形接続を捕捉するディープニューラルネットワークの機能を示す。
深層学習ネットワークを小さな数値実験ヘアピン溶接データセットに適用すると,平均細孔体積は0.0641,溶接深度は0.1079となる平均絶対誤差(MAE)値が得られるという有望な結果が得られた。
さらに,提案手法の信頼性を検証した。
このことは、溶接結果の制御において大きな利点を約束し、欠陥分類の監視にのみ依存する現在の傾向を越えている。
関連論文リスト
- Feature Density Estimation for Out-of-Distribution Detection via Normalizing Flows [7.91363551513361]
アウト・オブ・ディストリビューション(OOD)検出は,オープンワールド環境での学習システムの安全な配置において重要な課題である。
我々は、OODサンプル選択における研究者バイアスを回避するため、OODデータへの露出を必要としない、完全に教師なしのアプローチを提案する。
これは、任意の事前訓練されたモデルに適用可能なポストホック法であり、密度閾値による分布外検出を行うために、軽量な補助正規化フローモデルを訓練する。
論文 参考訳(メタデータ) (2024-02-09T16:51:01Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z) - Machine learning models for determination of weldbead shape parameters
for gas metal arc welded T-joints -- A comparative study [0.0]
溶接ビーズの形状は、接合部の質を評価する上で重要である。
本研究では,シールド鋼板の溶接ビーズ形状パラメータを予測するため,統計的設計と人工ニューラルネットワークに焦点を当てた。
論文 参考訳(メタデータ) (2022-06-06T06:11:22Z) - Deep Learning Model Explainability for Inspection Accuracy Improvement
in the Automotive Industry [0.0]
本研究の目的は, 溶接シームの分類精度と信頼性の向上に対する深層学習モデル説明可能性の寄与を把握し, 強調することである。
本稿では,モデル予測スコアとモデルの視覚的説明熱マップを組み合わせたハイブリッド手法を提案する。
その結果,ハイブリッドモデルの性能は目標よりも相対的に高く,少なくとも18%の精度向上に寄与していることがわかった。
論文 参考訳(メタデータ) (2021-10-07T12:23:00Z) - Unsupervised Scale-consistent Depth Learning from Video [131.3074342883371]
本研究では,単眼深度推定器SC-Depthを提案する。
スケール一貫性予測の能力により,我々の単分子学習深層ネットワークは簡単にORB-SLAM2システムに統合可能であることを示す。
提案したハイブリッドPseudo-RGBD SLAMは、KITTIにおいて魅力的な結果を示し、追加のトレーニングなしでKAISTデータセットにうまく一般化する。
論文 参考訳(メタデータ) (2021-05-25T02:17:56Z) - Deep Learning Based Steel Pipe Weld Defect Detection [0.0]
鋼管溶接欠陥検出分野に適用するために, 最先端の単段物検出アルゴリズム YOLOv5 を提案する。
実験の結果, 鋼管溶接欠陥検出にyolov5を適用すると精度が大幅に向上し, マルチクラス化作業が完了し, リアルタイム検出の基準を満たした。
論文 参考訳(メタデータ) (2021-04-30T11:15:13Z) - Learning Neural Network Subspaces [74.44457651546728]
近年の観測は,ニューラルネットワーク最適化の展望の理解を深めている。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
論文 参考訳(メタデータ) (2021-02-20T23:26:58Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
疎信号回復問題に対するエンドツーエンドの訓練可能なディープラーニングアーキテクチャを提案する。
提案手法は,出力するレイヤ数を学習し,各タスクのネットワーク深さを推論フェーズで動的に調整する。
論文 参考訳(メタデータ) (2020-10-29T06:32:53Z) - Classification of Spot-welded Joints in Laser Thermography Data using
Convolutional Neural Networks [52.661521064098416]
レーザサーモグラフィーデータから得られた画像を用いてスポット溶接の品質検査を行う手法を提案する。
我々は畳み込みニューラルネットワークを用いて溶接品質を分類し、異なるモデルの性能を互いに比較する。
論文 参考訳(メタデータ) (2020-10-24T20:38:12Z) - DPANet: Depth Potentiality-Aware Gated Attention Network for RGB-D
Salient Object Detection [107.96418568008644]
そこで我々は,DPANetという新しいネットワークを提案し,深度マップの可能性を明確にモデル化し,モーダル間の相補性を効果的に統合する。
深度ポテンシャル知覚を導入することにより、ネットワークは深度情報のポテンシャルを学習ベースで知覚することができる。
論文 参考訳(メタデータ) (2020-03-19T07:27:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。