Robust Streaming, Sampling, and a Perspective on Online Learning
- URL: http://arxiv.org/abs/2312.01634v1
- Date: Mon, 4 Dec 2023 05:29:28 GMT
- Title: Robust Streaming, Sampling, and a Perspective on Online Learning
- Authors: Evan Dogariu, Jiatong Yu
- Abstract summary: We present an overview of statistical learning, followed by a survey of robust streaming techniques and challenges.
We unify disjoint theorems in a shared framework and notation to clarify the deep connections that are discovered.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work we present an overview of statistical learning, followed by a
survey of robust streaming techniques and challenges, culminating in several
rigorous results proving the relationship that we motivate and hint at
throughout the journey. Furthermore, we unify often disjoint theorems in a
shared framework and notation to clarify the deep connections that are
discovered. We hope that by approaching these results from a shared
perspective, already aware of the technical connections that exist, we can
enlighten the study of both fields and perhaps motivate new and previously
unconsidered directions of research.
Related papers
- Discovering emergent connections in quantum physics research via dynamic word embeddings [0.562479170374811]
We introduce a novel approach based on dynamic word embeddings for concept combination prediction.
Unlike knowledge graphs, our method captures implicit relationships between concepts, can be learned in a fully unsupervised manner, and encodes a broader spectrum of information.
Our findings suggest that this representation offers a more flexible and informative way of modeling conceptual relationships in scientific literature.
arXiv Detail & Related papers (2024-11-10T19:45:59Z) - Towards Trustworthy and Aligned Machine Learning: A Data-centric Survey
with Causality Perspectives [11.63431725146897]
The trustworthiness of machine learning has emerged as a critical topic in the field.
This survey presents the background of trustworthy machine learning development using a unified set of concepts.
We provide a unified language with mathematical vocabulary to link these methods across robustness, adversarial robustness, interpretability, and fairness.
arXiv Detail & Related papers (2023-07-31T17:11:35Z) - A Comprehensive Survey of Forgetting in Deep Learning Beyond Continual Learning [58.107474025048866]
Forgetting refers to the loss or deterioration of previously acquired knowledge.
Forgetting is a prevalent phenomenon observed in various other research domains within deep learning.
arXiv Detail & Related papers (2023-07-16T16:27:58Z) - From Patches to Objects: Exploiting Spatial Reasoning for Better Visual
Representations [2.363388546004777]
We propose a novel auxiliary pretraining method that is based on spatial reasoning.
Our proposed method takes advantage of a more flexible formulation of contrastive learning by introducing spatial reasoning as an auxiliary task for discriminative self-supervised methods.
arXiv Detail & Related papers (2023-05-21T07:46:46Z) - Parsing Objects at a Finer Granularity: A Survey [54.72819146263311]
Fine-grained visual parsing is important in many real-world applications, e.g., agriculture, remote sensing, and space technologies.
Predominant research efforts tackle these fine-grained sub-tasks following different paradigms.
We conduct an in-depth study of the advanced work from a new perspective of learning the part relationship.
arXiv Detail & Related papers (2022-12-28T04:20:10Z) - Weakly-Supervised Spatio-Temporal Anomaly Detection in Surveillance
Video [128.41392860714635]
We introduce Weakly-Supervised Snoma-Temporally Detection (WSSTAD) in surveillance video.
WSSTAD aims to localize a-temporal tube (i.e. sequence of bounding boxes at consecutive times) that encloses abnormal event.
We propose a dual-branch network which takes as input proposals with multi-granularities in both spatial-temporal domains.
arXiv Detail & Related papers (2021-08-09T06:11:14Z) - Exploring the Limits of Few-Shot Link Prediction in Knowledge Graphs [49.6661602019124]
We study a spectrum of models derived by generalizing the current state of the art for few-shot link prediction.
We find that a simple zero-shot baseline - which ignores any relation-specific information - achieves surprisingly strong performance.
Experiments on carefully crafted synthetic datasets show that having only a few examples of a relation fundamentally limits models from using fine-grained structural information.
arXiv Detail & Related papers (2021-02-05T21:04:31Z) - Behavior Priors for Efficient Reinforcement Learning [97.81587970962232]
We consider how information and architectural constraints can be combined with ideas from the probabilistic modeling literature to learn behavior priors.
We discuss how such latent variable formulations connect to related work on hierarchical reinforcement learning (HRL) and mutual information and curiosity based objectives.
We demonstrate the effectiveness of our framework by applying it to a range of simulated continuous control domains.
arXiv Detail & Related papers (2020-10-27T13:17:18Z) - Deep Learning for Community Detection: Progress, Challenges and
Opportunities [79.26787486888549]
Article summarizes the contributions of the various frameworks, models, and algorithms in deep neural networks.
This article summarizes the contributions of the various frameworks, models, and algorithms in deep neural networks.
arXiv Detail & Related papers (2020-05-17T11:22:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.