Discovering emergent connections in quantum physics research via dynamic word embeddings
- URL: http://arxiv.org/abs/2411.06577v1
- Date: Sun, 10 Nov 2024 19:45:59 GMT
- Title: Discovering emergent connections in quantum physics research via dynamic word embeddings
- Authors: Felix Frohnert, Xuemei Gu, Mario Krenn, Evert van Nieuwenburg,
- Abstract summary: We introduce a novel approach based on dynamic word embeddings for concept combination prediction.
Unlike knowledge graphs, our method captures implicit relationships between concepts, can be learned in a fully unsupervised manner, and encodes a broader spectrum of information.
Our findings suggest that this representation offers a more flexible and informative way of modeling conceptual relationships in scientific literature.
- Score: 0.562479170374811
- License:
- Abstract: As the field of quantum physics evolves, researchers naturally form subgroups focusing on specialized problems. While this encourages in-depth exploration, it can limit the exchange of ideas across structurally similar problems in different subfields. To encourage cross-talk among these different specialized areas, data-driven approaches using machine learning have recently shown promise to uncover meaningful connections between research concepts, promoting cross-disciplinary innovation. Current state-of-the-art approaches represent concepts using knowledge graphs and frame the task as a link prediction problem, where connections between concepts are explicitly modeled. In this work, we introduce a novel approach based on dynamic word embeddings for concept combination prediction. Unlike knowledge graphs, our method captures implicit relationships between concepts, can be learned in a fully unsupervised manner, and encodes a broader spectrum of information. We demonstrate that this representation enables accurate predictions about the co-occurrence of concepts within research abstracts over time. To validate the effectiveness of our approach, we provide a comprehensive benchmark against existing methods and offer insights into the interpretability of these embeddings, particularly in the context of quantum physics research. Our findings suggest that this representation offers a more flexible and informative way of modeling conceptual relationships in scientific literature.
Related papers
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - What Machine Learning Tells Us About the Mathematical Structure of Concepts [0.0]
The study highlights how each framework provides a distinct mathematical perspective for modeling concepts.
This work emphasizes the importance of interdisciplinary dialogue, aiming to enrich our understanding of the complex relationship between human cognition and artificial intelligence.
arXiv Detail & Related papers (2024-08-28T03:30:22Z) - Robust Streaming, Sampling, and a Perspective on Online Learning [0.0]
We present an overview of statistical learning, followed by a survey of robust streaming techniques and challenges.
We unify disjoint theorems in a shared framework and notation to clarify the deep connections that are discovered.
arXiv Detail & Related papers (2023-12-04T05:29:28Z) - Exploring and Verbalizing Academic Ideas by Concept Co-occurrence [42.16213986603552]
This study devises a framework based on concept co-occurrence for academic idea inspiration.
We construct evolving concept graphs according to the co-occurrence relationship of concepts from 20 disciplines or topics.
We generate a description of an idea based on a new data structure called co-occurrence citation quintuple.
arXiv Detail & Related papers (2023-06-04T07:01:30Z) - Mapping Knowledge Representations to Concepts: A Review and New
Perspectives [0.6875312133832078]
This review focuses on research that aims to associate internal representations with human understandable concepts.
We find this taxonomy and theories of causality, useful for understanding what can be expected, and not expected, from neural network explanations.
The analysis additionally uncovers an ambiguity in the reviewed literature related to the goal of model explainability.
arXiv Detail & Related papers (2022-12-31T12:56:12Z) - Causal Reasoning Meets Visual Representation Learning: A Prospective
Study [117.08431221482638]
Lack of interpretability, robustness, and out-of-distribution generalization are becoming the challenges of the existing visual models.
Inspired by the strong inference ability of human-level agents, recent years have witnessed great effort in developing causal reasoning paradigms.
This paper aims to provide a comprehensive overview of this emerging field, attract attention, encourage discussions, bring to the forefront the urgency of developing novel causal reasoning methods.
arXiv Detail & Related papers (2022-04-26T02:22:28Z) - Discovering Concepts in Learned Representations using Statistical
Inference and Interactive Visualization [0.76146285961466]
Concept discovery is important for bridging the gap between non-deep learning experts and model end-users.
Current approaches include hand-crafting concept datasets and then converting them to latent space directions.
In this study, we offer another two approaches to guide user discovery of meaningful concepts, one based on multiple hypothesis testing, and another on interactive visualization.
arXiv Detail & Related papers (2022-02-09T22:29:48Z) - Holographic tensor network models and quantum error correction: A
topical review [78.28647825246472]
Recent progress in studies of holographic dualities has led to a confluence with concepts and techniques from quantum information theory.
A particularly successful approach has involved capturing holographic properties by means of tensor networks.
arXiv Detail & Related papers (2021-02-04T14:09:21Z) - Formalising Concepts as Grounded Abstractions [68.24080871981869]
This report shows how representation learning can be used to induce concepts from raw data.
The main technical goal of this report is to show how techniques from representation learning can be married with a lattice-theoretic formulation of conceptual spaces.
arXiv Detail & Related papers (2021-01-13T15:22:01Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
This paper focuses on an alternative way of defining Neural Networks, that is different from the majority of existing approaches.
The structure of the neural architecture is defined by means of a special class of constraints that are extended also to the interaction with data.
The proposed theory is cast into the time domain, in which data are presented to the network in an ordered manner.
arXiv Detail & Related papers (2020-09-01T09:07:25Z) - A Chain Graph Interpretation of Real-World Neural Networks [58.78692706974121]
We propose an alternative interpretation that identifies NNs as chain graphs (CGs) and feed-forward as an approximate inference procedure.
The CG interpretation specifies the nature of each NN component within the rich theoretical framework of probabilistic graphical models.
We demonstrate with concrete examples that the CG interpretation can provide novel theoretical support and insights for various NN techniques.
arXiv Detail & Related papers (2020-06-30T14:46:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.