Learning-Based Approaches to Predictive Monitoring with Conformal
Statistical Guarantees
- URL: http://arxiv.org/abs/2312.01959v1
- Date: Mon, 4 Dec 2023 15:16:42 GMT
- Title: Learning-Based Approaches to Predictive Monitoring with Conformal
Statistical Guarantees
- Authors: Francesca Cairoli, Luca Bortolussi, Nicola Paoletti
- Abstract summary: This tutorial focuses on efficient methods to predictive monitoring (PM)
PM is the problem of detecting future violations of a given requirement from the current state of a system.
We present a general and comprehensive framework summarizing our approach to the predictive monitoring of CPSs.
- Score: 2.1684857243537334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This tutorial focuses on efficient methods to predictive monitoring (PM), the
problem of detecting at runtime future violations of a given requirement from
the current state of a system. While performing model checking at runtime would
offer a precise solution to the PM problem, it is generally computationally
expensive. To address this scalability issue, several lightweight approaches
based on machine learning have recently been proposed. These approaches work by
learning an approximate yet efficient surrogate (deep learning) model of the
expensive model checker. A key challenge remains to ensure reliable
predictions, especially in safety-critical applications. We review our recent
work on predictive monitoring, one of the first to propose learning-based
approximations for CPS verification of temporal logic specifications and the
first in this context to apply conformal prediction (CP) for rigorous
uncertainty quantification. These CP-based uncertainty estimators offer
statistical guarantees regarding the generalization error of the learning
model, and they can be used to determine unreliable predictions that should be
rejected. In this tutorial, we present a general and comprehensive framework
summarizing our approach to the predictive monitoring of CPSs, examining in
detail several variants determined by three main dimensions: system dynamics
(deterministic, non-deterministic, stochastic), state observability, and
semantics of requirements' satisfaction (Boolean or quantitative).
Related papers
- Selective Learning: Towards Robust Calibration with Dynamic Regularization [79.92633587914659]
Miscalibration in deep learning refers to there is a discrepancy between the predicted confidence and performance.
We introduce Dynamic Regularization (DReg) which aims to learn what should be learned during training thereby circumventing the confidence adjusting trade-off.
arXiv Detail & Related papers (2024-02-13T11:25:20Z) - Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
We introduce SMASH: a Score MAtching estimator for learning markedPs with uncertainty quantification.
Specifically, our framework adopts a normalization-free objective by estimating the pseudolikelihood of markedPs through score-matching.
The superior performance of our proposed framework is demonstrated through extensive experiments in both event prediction and uncertainty quantification.
arXiv Detail & Related papers (2023-10-25T02:37:51Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
We train an auxiliary model with a self-supervised pretext task on top of an existing predictive model and use the self-supervised error as an additional feature to estimate nonconformity scores.
We empirically demonstrate the benefit of the additional information using both synthetic and real data on the efficiency (width), deficit, and excess of conformal prediction intervals.
arXiv Detail & Related papers (2023-02-23T18:57:14Z) - Uncertainty Estimation based on Geometric Separation [13.588210692213568]
In machine learning, accurately predicting the probability that a specific input is correct is crucial for risk management.
We put forward a novel geometric-based approach for improving uncertainty estimations in machine learning models.
arXiv Detail & Related papers (2023-01-11T13:19:24Z) - A Call to Reflect on Evaluation Practices for Failure Detection in Image
Classification [0.491574468325115]
We present a large-scale empirical study for the first time enabling benchmarking confidence scoring functions.
The revelation of a simple softmax response baseline as the overall best performing method underlines the drastic shortcomings of current evaluation.
arXiv Detail & Related papers (2022-11-28T12:25:27Z) - Evaluation of Machine Learning Techniques for Forecast Uncertainty
Quantification [0.13999481573773068]
Ensemble forecasting is, so far, the most successful approach to produce relevant forecasts along with an estimation of their uncertainty.
Main limitations of ensemble forecasting are the high computational cost and the difficulty to capture and quantify different sources of uncertainty.
In this work proof-of-concept model experiments are conducted to examine the performance of ANNs trained to predict a corrected state of the system and the state uncertainty using only a single deterministic forecast as input.
arXiv Detail & Related papers (2021-11-29T16:52:17Z) - Predictive machine learning for prescriptive applications: a coupled
training-validating approach [77.34726150561087]
We propose a new method for training predictive machine learning models for prescriptive applications.
This approach is based on tweaking the validation step in the standard training-validating-testing scheme.
Several experiments with synthetic data demonstrate promising results in reducing the prescription costs in both deterministic and real models.
arXiv Detail & Related papers (2021-10-22T15:03:20Z) - Neural Predictive Monitoring under Partial Observability [4.1316328854247155]
We present a learning-based method for predictive monitoring (PM) that produces accurate and reliable reachability predictions despite partial observability (PO)
Our method results in highly accurate reachability predictions and error detection, as well as tight prediction regions with guaranteed coverage.
arXiv Detail & Related papers (2021-08-16T15:08:20Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
We describe procedures for robust predictive inference, where a model provides uncertainty estimates on its predictions rather than point predictions.
We present a method that produces prediction sets (almost exactly) giving the right coverage level for any test distribution in an $f$-divergence ball around the training population.
An essential component of our methodology is to estimate the amount of expected future data shift and build robustness to it.
arXiv Detail & Related papers (2020-08-10T17:09:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.