TimeChat: A Time-sensitive Multimodal Large Language Model for Long Video Understanding
- URL: http://arxiv.org/abs/2312.02051v2
- Date: Thu, 28 Mar 2024 12:41:14 GMT
- Title: TimeChat: A Time-sensitive Multimodal Large Language Model for Long Video Understanding
- Authors: Shuhuai Ren, Linli Yao, Shicheng Li, Xu Sun, Lu Hou,
- Abstract summary: TimeChat is a time-sensitive multimodal large language model specifically designed for long video understanding.
Our model incorporates two key architectural contributions: (1) a timestamp-aware frame encoder that binds visual content with the timestamp of each frame, and (2) a sliding video Q-Former that produces a video token sequence of varying lengths.
- Score: 20.037781644877388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work proposes TimeChat, a time-sensitive multimodal large language model specifically designed for long video understanding. Our model incorporates two key architectural contributions: (1) a timestamp-aware frame encoder that binds visual content with the timestamp of each frame, and (2) a sliding video Q-Former that produces a video token sequence of varying lengths to accommodate videos of various durations. Additionally, we construct an instruction-tuning dataset, encompassing 6 tasks and a total of 125K instances, to further enhance TimeChat's instruction-following performance. Experiment results across various video understanding tasks, such as dense captioning, temporal grounding, and highlight detection, demonstrate TimeChat's strong zero-shot temporal localization and reasoning capabilities. For example, it achieves +9.2 F1 score and +2.8 CIDEr on YouCook2, +5.8 HIT@1 on QVHighlights, and +27.5 R@1 (IoU=0.5) on Charades-STA, compared to state-of-the-art video large language models, holding the potential to serve as a versatile video assistant for long-form video comprehension tasks and satisfy realistic user requirements.
Related papers
- MovieChat+: Question-aware Sparse Memory for Long Video Question Answering [36.14140811797466]
We propose MovieChat to overcome the challenges of understanding long videos.
We use tokens in Transformers as the carriers of memory in combination with our specially designed memory mechanism.
MovieChat achieves state-of-the-art performance in long video understanding, along with the released MovieChat-1K benchmark with 1K long video, 2K temporal grounding labels, and 14K manual annotations for validation of the effectiveness of our method.
arXiv Detail & Related papers (2024-04-26T06:17:04Z) - InternVideo2: Scaling Foundation Models for Multimodal Video Understanding [51.129913789991924]
InternVideo2 is a new family of video foundation models (FM) that achieve state-of-the-art results in video recognition, video-speech tasks, and video-centric tasks.
Our core design is a progressive training approach that unifies the masked video modeling, cross contrastive learning, and prediction token, scaling up to 6B video size.
arXiv Detail & Related papers (2024-03-22T17:57:42Z) - VideoAgent: A Memory-augmented Multimodal Agent for Video Understanding [28.316828641898375]
VideoAgent: 1) constructs a structured memory to store both the generic temporal event descriptions and object-centric tracking states of the video.
2) given an input task query, it employs tools including video segment localization and object memory querying along with other visual foundation models to interactively solve the task.
arXiv Detail & Related papers (2024-03-18T05:07:59Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - TESTA: Temporal-Spatial Token Aggregation for Long-form Video-Language
Understanding [20.16000249533665]
TESTA condenses video semantics by adaptively aggregating similar frames, as well as similar patches within each frame.
Building upon TESTA, we introduce a pre-trained video-language model equipped with a divided space-time token aggregation module in each video block.
We evaluate our model on five datasets for paragraph-to-video retrieval and long-form VideoQA tasks.
arXiv Detail & Related papers (2023-10-29T16:25:32Z) - HiTeA: Hierarchical Temporal-Aware Video-Language Pre-training [49.52679453475878]
We propose a Temporal-Aware video-language pre-training framework, HiTeA, for modeling cross-modal alignment between moments and texts.
We achieve state-of-the-art results on 15 well-established video-language understanding and generation tasks.
arXiv Detail & Related papers (2022-12-30T04:27:01Z) - Long-Form Video-Language Pre-Training with Multimodal Temporal
Contrastive Learning [39.80936685227549]
Large-scale video-language pre-training has shown significant improvement in video-language understanding tasks.
We introduce a Long-Form VIdeo-LAnguage pre-training model (VILA) and train it on a large-scale long-form video and paragraph dataset.
We fine-tune the model on seven downstream long-form video-language understanding tasks, achieve new state-of-the-art performances.
arXiv Detail & Related papers (2022-10-12T09:08:27Z) - Revisiting the "Video" in Video-Language Understanding [56.15777956496518]
We propose the atemporal probe (ATP), a new model for video-language analysis.
We characterize the limitations and potential of current video-language benchmarks.
We show that effectively integrating ATP into full video-level temporal models can improve efficiency and state-of-the-art accuracy.
arXiv Detail & Related papers (2022-06-03T17:57:33Z) - Language Models with Image Descriptors are Strong Few-Shot
Video-Language Learners [167.0346394848718]
We propose VidIL, a few-shot Video-language Learner via Image and Language models.
We use the image-language models to translate the video content into frame captions, object, attribute, and event phrases.
We then instruct a language model, with a prompt containing a few in-context examples, to generate a target output from the composed content.
arXiv Detail & Related papers (2022-05-22T05:18:27Z) - HERO: Hierarchical Encoder for Video+Language Omni-representation
Pre-training [75.55823420847759]
We present HERO, a novel framework for large-scale video+language omni-representation learning.
HERO encodes multimodal inputs in a hierarchical structure, where local context of a video frame is captured by a Cross-modal Transformer.
HERO is jointly trained on HowTo100M and large-scale TV datasets to gain deep understanding of complex social dynamics with multi-character interactions.
arXiv Detail & Related papers (2020-05-01T03:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.